Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Camilla F. Aglen"'
Autor:
Nehmat Houssami, Solveig Hofvind, Anne L. Soerensen, Kristy P. Robledo, Kylie Hunter, Daniela Bernardi, Kristina Lång, Kristin Johnson, Camilla F. Aglen, Sophia Zackrisson
Publikováno v:
EClinicalMedicine, Vol 34, Iss , Pp 100804- (2021)
Background: Digital breast tomosynthesis (DBT) improves breast cancer (BC) detection compared to mammography, however, it is unknown whether this reduces interval cancer rate (ICR) at follow-up. Methods: Using individual participant data (IPD) from D
Externí odkaz:
https://doaj.org/article/0caff8796e544a089509b8f9ab794eda
Publikováno v:
European Radiology
Objectives Artificial intelligence (AI) has shown promising results when used on retrospective data from mammographic screening. However, few studies have explored the possible consequences of different strategies for combining AI and radiologists in
Autor:
Marthe Larsen, Camilla F. Aglen, Christoph I. Lee, Solveig R. Hoff, Håkon Lund-Hanssen, Kristina Lång, Jan F. Nygård, Giske Ursin, Solveig Hofvind
Publikováno v:
Radiology
The performance of the artificial intelligence system was promising for breast cancer detection in a large population-based mammography screening program. Background Artificial intelligence (AI) has shown promising results for cancer detection with m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f5255b3072596c78ef3f8cf93d4d0e7
https://hdl.handle.net/11250/3058933
https://hdl.handle.net/11250/3058933
Autor:
Kylie E Hunter, Kristin Johnson, Nehmat Houssami, Camilla F. Aglen, Kristy P. Robledo, Daniela Bernardi, Anne L. Soerensen, Solveig Hofvind, Sophia Zackrisson, Kristina Lång
Publikováno v:
EClinicalMedicine
EClinicalMedicine, Vol 34, Iss, Pp 100804-(2021)
EClinicalMedicine, Vol 34, Iss, Pp 100804-(2021)
Background: Digital breast tomosynthesis (DBT) improves breast cancer (BC) detection compared to mammography, however, it is unknown whether this reduces interval cancer rate (ICR) at follow-up. Methods: Using individual participant data (IPD) from D