Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Camara, Leonardo"'
In this paper, we address one of the most basic and fundamental problems in the theory of foliations and ODEs, the topological invariance of the algebraic multiplicity of a holomorphic foliation. For instance, we prove an adapted version of A'Campo-L
Externí odkaz:
http://arxiv.org/abs/2407.09306
We relate the moduli space of analytic equivalent germs of reduced quasi-homogeneous functions at $(\mathbb{C}^2,0)$ with their bi-Lipschitz equivalence classes. We show that any non-degenerate continuous family of (reduced) quasi-homogeneous functio
Externí odkaz:
http://arxiv.org/abs/2004.03778
Autor:
Câmara, Leonardo, Corrêa, Maurício
We show a residues formula for maps generically transversal to regular holomorphic distributions.
Comment: To appear in Proceedings of the American Mathematical Society
Comment: To appear in Proceedings of the American Mathematical Society
Externí odkaz:
http://arxiv.org/abs/1804.07139
Autor:
Câmara, Leonardo, Scardua, Bruno
This paper is about the integrability of complex vector fields in dimension three in a neighborhood of a singular point. More precisely, we study the existence of holomorphic first integrals for isolated singularities of holomorphic vector fields in
Externí odkaz:
http://arxiv.org/abs/1407.4560
Autor:
Câmara, Leonardo, Scardua, Bruno
We state some generalizations of a theorem due to G. Darboux, which originally states that a polynomial vector field in the complex plane exhibits a rational first integral and has all its orbits algebraic provided that it exhibits infinitely many al
Externí odkaz:
http://arxiv.org/abs/1205.4074
Autor:
Câmara, Leonardo Meireles
We apply techniques of Holomorphic Foliations in the description of the analytic invariants associated to germs of quasi-homogeneous curves in $(\mathbb{C}^2,0)$. As a consequence we obtain an effective method to determine whether two quasi-homogeneo
Externí odkaz:
http://arxiv.org/abs/1009.1664
Autor:
CÂMARA, LEONARDO M., CORRÊA, MAURÍCIO
Publikováno v:
Proceedings of the American Mathematical Society, 2018 Dec 01. 146(12), 5225-5234.
Externí odkaz:
https://www.jstor.org/stable/90026457
Autor:
Camara, Leonardo, Scardua, Bruno
We determine topological and algebraic conditions for a germ of holomorphic foliation $\mathcal F(X)$ induced by a generic vector field $X$ on $(\mathbb{C}^{3},0)$ to have a holomorphic first integral, i.e., a germ of holomorphic map $F \colon(\mathb
Externí odkaz:
http://arxiv.org/abs/0710.4774
Autor:
Câmara, Leonardo Meireles
Publikováno v:
In Indagationes Mathematicae June 2018 29(3):878-884
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.