Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Calysta Yan"'
Autor:
Tanya Grancharova, Kaytlyn A. Gerbin, Alexander B. Rosenberg, Charles M. Roco, Joy E. Arakaki, Colette M. DeLizo, Stephanie Q. Dinh, Rory M. Donovan-Maiye, Matthew Hirano, Angelique M. Nelson, Joyce Tang, Julie A. Theriot, Calysta Yan, Vilas Menon, Sean P. Palecek, Georg Seelig, Ruwanthi N. Gunawardane
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-21 (2021)
Abstract We performed a comprehensive analysis of the transcriptional changes occurring during human induced pluripotent stem cell (hiPSC) differentiation to cardiomyocytes. Using single cell RNA-seq, we sequenced > 20,000 single cells from 55 indepe
Externí odkaz:
https://doaj.org/article/d4fb933e376547c486f87bcf5fd17339
Autor:
Rory M Donovan-Maiye, Jackson M Brown, Caleb K Chan, Liya Ding, Calysta Yan, Nathalie Gaudreault, Julie A Theriot, Mary M Maleckar, Theo A Knijnenburg, Gregory R Johnson
Publikováno v:
PLoS Computational Biology, Vol 18, Iss 1, p e1009155 (2022)
We introduce a framework for end-to-end integrative modeling of 3D single-cell multi-channel fluorescent image data of diverse subcellular structures. We employ stacked conditional β-variational autoencoders to first learn a latent representation of
Externí odkaz:
https://doaj.org/article/01a428aaa62048a293fee6809efd8248
Autor:
Matheus P. Viana, Jianxu Chen, Theo A. Knijnenburg, Ritvik Vasan, Calysta Yan, Joy E. Arakaki, Matte Bailey, Ben Berry, Antoine Borensztejn, Eva M. Brown, Sara Carlson, Julie A. Cass, Basudev Chaudhuri, Kimberly R. Cordes Metzler, Mackenzie E. Coston, Zach J. Crabtree, Steve Davidson, Colette M. DeLizo, Shailja Dhaka, Stephanie Q. Dinh, Thao P. Do, Justin Domingus, Rory M. Donovan-Maiye, Alexandra J. Ferrante, Tyler J. Foster, Christopher L. Frick, Griffin Fujioka, Margaret A. Fuqua, Jamie L. Gehring, Kaytlyn A. Gerbin, Tanya Grancharova, Benjamin W. Gregor, Lisa J. Harrylock, Amanda Haupt, Melissa C. Hendershott, Caroline Hookway, Alan R. Horwitz, H. Christopher Hughes, Eric J. Isaac, Gregory R. Johnson, Brian Kim, Andrew N. Leonard, Winnie W. Leung, Jordan J. Lucas, Susan A. Ludmann, Blair M. Lyons, Haseeb Malik, Ryan McGregor, Gabe E. Medrash, Sean L. Meharry, Kevin Mitcham, Irina A. Mueller, Timothy L. Murphy-Stevens, Aditya Nath, Angelique M. Nelson, Sandra A. Oluoch, Luana Paleologu, T. Alexander Popiel, Megan M. Riel-Mehan, Brock Roberts, Lisa M. Schaefbauer, Magdalena Schwarzl, Jamie Sherman, Sylvain Slaton, M. Filip Sluzewski, Jacqueline E. Smith, Youngmee Sul, Madison J. Swain-Bowden, W. Joyce Tang, Derek J. Thirstrup, Daniel M. Toloudis, Andrew P. Tucker, Veronica Valencia, Winfried Wiegraebe, Thushara Wijeratna, Ruian Yang, Rebecca J. Zaunbrecher, Ramon Lorenzo D. Labitigan, Adrian L. Sanborn, Graham T. Johnson, Ruwanthi N. Gunawardane, Nathalie Gaudreault, Julie A. Theriot, Susanne M. Rafelski
Publikováno v:
Nature. 613:345-354
Understanding how a subset of expressed genes dictates cellular phenotype is a considerable challenge owing to the large numbers of molecules involved, their combinatorics and the plethora of cellular behaviours that they determine1,2. Here we reduce
Autor:
Nathalie Gaudreault, Liya Ding, Jackson M. Brown, Caleb K. Chan, Calysta Yan, Mary M. Maleckar, Rory Donovan-Maiye, Gregory R. Johnson, Theo A. Knijnenburg, Julie A. Theriot
1AbstractWe introduce a framework for end-to-end integrative modeling of 3D single-cell multi-channel fluorescent image data of diverse subcellular structures. We employ stacked conditional β-variational autoencoders to first learn a latent represen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a086f0c69572d9370eadb452911bc2ec
https://doi.org/10.1101/2021.06.09.447725
https://doi.org/10.1101/2021.06.09.447725
Autor:
Ruwanthi N. Gunawardane, Angelique M. Nelson, Matthew Hirano, Stephanie Q. Dinh, Julie A. Theriot, Joyce Tang, Sean P. Palecek, Alexander B. Rosenberg, Joy Arakaki, Vilas Menon, Tanya Grancharova, Calysta Yan, Rory Donovan-Maiye, Georg Seelig, Colette M. DeLizo, Charles M. Roco, Kaytlyn A. Gerbin
Publikováno v:
Scientific Reports
Scientific Reports, Vol 11, Iss 1, Pp 1-21 (2021)
Scientific Reports, Vol 11, Iss 1, Pp 1-21 (2021)
We performed a comprehensive analysis of the transcriptional changes within and across cell populations during human induced pluripotent stem cell (hiPSC) differentiation to cardiomyocytes. Using the single cell RNA-seq combinatorial barcoding method
Autor:
Joy Arakaki, Winnie W. Leung, Melissa C. Hendershott, W. Joyce Tang, Nathalie Gaudreault, Winfried Wiegraebe, Margaret A. Fuqua, Antoine Borensztejn, Susanne M. Rafelski, Mackenzie E. Coston, Angelique M. Nelson, Benjamin W. Gregor, Thao P. Do, Irina A. Mueller, Amanda Haupt, Derek Thirstrup, Ruwanthi N. Gunawardane, Calysta Yan, Madison J. Swain-Bowden
Our goal is to identify and understand cellular behaviors using 3D live imaging of cell organization. To do this, we image human inducible pluripotent stem cell (hiPSC) lines expressing fluorescently tagged protein representing specific cellular orga
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8fb9f4207060c39cb061746f35fe0d56
https://doi.org/10.1101/2020.12.18.423371
https://doi.org/10.1101/2020.12.18.423371
Autor:
Ruwanthi N. Gunawardane, Kimberly R. Cordes Metzler, Angelique M. Nelson, Georg Seelig, M. Filip Sluzewski, Jamie L. Gehring, Melissa C. Hendershott, Theo A. Knijnenburg, Sean P. Palecek, Charles M. Roco, Kaytlyn A. Gerbin, Stephanie Q. Dinh, Jackson M. Brown, Aditya Nath, Gregory R. Johnson, Julie A. Theriot, Matthew Hirano, Vilas Menon, Tanya Grancharova, Susanne M. Rafelski, Nathalie Gaudreault, Alexander B. Rosenberg, Rebecca J. Zaunbrecher, Calysta Yan, Rory Donovan-Maiye, Matheus P. Viana
SummaryWe present a quantitative co-analysis of RNA abundance and sarcomere organization in single cells and an integrated framework to predict subcellular organization states from gene expression. We used human induced pluripotent stem cell (hiPSC)-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0e326e27fbf7fc65e085222dc6bf70aa
https://doi.org/10.1101/2020.05.26.081083
https://doi.org/10.1101/2020.05.26.081083
Autor:
Tanya Grancharova, Nathalie Gaudreault, Rebecca J. Zaunbrecher, M. Filip Sluzewski, Ruwanthi N. Gunawardane, Melissa C. Hendershott, Matheus P. Viana, HyeonWoo Lee, Jamie L. Gehring, Calysta Yan, Jianxu Chen, Rory Donovan-Maiye, Gregory R. Johnson, Jackson M. Brown, Kaytlyn A. Gerbin, Aditya Nath, Kimberly R. Cordes Metzler, Angelique M. Nelson, Susanne M. Rafelski, Julie A. Theriot, Stephanie Q. Dinh, Helen G. Anderson, Theo A. Knijnenburg
Publikováno v:
Cell systems. 12(6)
Although some cell types may be defined anatomically or by physiological function, a rigorous definition of cell state remains elusive. Here, we develop a quantitative, imaging-based platform for the systematic and automated classification of subcell