Zobrazeno 1 - 10
of 126
pro vyhledávání: '"Calyptogena magnifica"'
Autor:
Alexis Khripounoff, Patricia Pignet, Cecile Cathalot, Anne Godfroy, Sophie Arnaud-Haond, Marie-Anne Cambon-Bonavita, Nicolas Gayet, Jean-Claude Caprais, Carole Decker, Adrien Vigneron, Karine Olu, Perrine Cruaud, Claire Papot, Jocelyn Le Baut
Publikováno v:
Marine Ecology-an Evolutionary Perspective (0173-9565) (Wiley), 2019-06, Vol. 40, N. 3, P. e12541 (16p.)
Marine Ecology
Marine Ecology, Wiley, 2019, 40 (3), pp.e12541. ⟨10.1111/maec.12541⟩
Marine Ecology
Marine Ecology, Wiley, 2019, 40 (3), pp.e12541. ⟨10.1111/maec.12541⟩
WOS:000472949800006; This study provides an analysis of vesicomyid bivalve-symbiont community distribution across cold seep and hydrothermal vent areas in the Guaymas Basin (Gulf of California, Mexico). Using a combination of morphological and molecu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2a796692b9c739cd290fa563a72cb50
https://archimer.ifremer.fr/doc/00493/60426/
https://archimer.ifremer.fr/doc/00493/60426/
Autor:
Elena M Krylova, Heiko Sahling
Publikováno v:
Zootaxa. 4808
A new monotypic genus, Turneroconcha, is established for T. magnifica (Boss & Turner) which was originally assigned to the genus Calyptogena Dall. The distinguishing morphological characters of the new genus are the combination of both conchological
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Mitochondrial DNA Part A. 27:4333-4335
The mitochondrial genome of the hydrothermal vent clam Calyptogena magnifica (Bivalvia, Veneroida, Vesicomyidae) is reported for the first time in this study. The total length of its mitochondrial genome is 19 738 bp with overall GC content of 31.6%.
Autor:
Stephanie Markert, Nicole Dubilier, Doerte Becher, Martin Moche, Andreas Otto, Thomas Schweder, Manuel Kleiner, Noriyuki Satoh, Lizbeth Sayavedra, Jillian M. Petersen, Takeshi Takeuchi, Ruby Ponnudurai
Publikováno v:
ISME JOURNAL
The ISME Journal
The ISME Journal
The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e4e7295f3922788f7cb4370c33d1130
https://hdl.handle.net/21.11116/0000-0001-C1F5-021.11116/0000-0002-FEB0-9
https://hdl.handle.net/21.11116/0000-0001-C1F5-021.11116/0000-0002-FEB0-9
Publikováno v:
Environmental Microbiology. 12:2946-2964
P>Protist communities associated with deep seawater and bivalves from six hydrothermal sites in the Pacific Ocean were characterized by microscopy and molecular rRNA gene surveys (18S rRNA) and compared with planktonic communities from Pacific deep-p
Publikováno v:
Marine Ecology Progress Series. 275:11-19
Organisms at deep-sea hydrothermal vent or cold-seep communities represent oases of prey in an otherwise prey-poor desert. Why deep-sea consumers that remove other dense food patches do not rapidly remove the high biomass of prey from these communiti
Autor:
Aline Fiala-Médioni, A. M. Pruski
Publikováno v:
Journal of Experimental Biology. 206:2923-2930
SUMMARYSymbiotic associations between marine invertebrates and sulphur-oxidising bacteria are a common feature in communities from sulphide-rich environments,such as those flourishing in the vicinity of hydrothermal vents. While the bacterial endosym
Publikováno v:
Genome Announcements
Here, we present the draft genome of the endosymbiont “ Candidatus Ruthia magnifica” UCD-CM, a member of the phylum Proteobacteria , found from the gills of a deep-sea giant clam, Calyptogena magnifica . The assembly consists of 1,160,249 bp cont
Publikováno v:
Journal of Experimental Biology. 204:741-750
Hydrogen sulfide is generally accepted to be the energy source for the establishment of sulfur-oxidizing symbiotic communities. Here, we show that sulfur-storing symbioses not only consume but also produce large amounts of hydrogen sulfide. The prere