Zobrazeno 1 - 10
of 434
pro vyhledávání: '"Calderón, Antonio A."'
Autor:
Calderón, Antonio J., Sanchez, José M.
We study the structure of graded Lie superalgebras with arbitrary dimension and over an arbitrary field ${\mathbb K}$. We show that any of such algebras ${\mathfrak L}$ with a symmetric $G$-support is of the form ${\mathfrak L} = U + \sum\limits_{j}I
Externí odkaz:
http://arxiv.org/abs/2403.08494
Publikováno v:
Linear Multilinear Algebra 65 (2017), no. 1, 156-165
We study the structure of certain modules $V$ over linear spaces $W$ with restrictions neither on the dimensions nor on the base field $\mathbb F$. A basis $\mathfrak B = \{v_i\}_{i\in I}$ of $V$ is called multiplicative respect to the basis $\mathfr
Externí odkaz:
http://arxiv.org/abs/2403.08779
Publikováno v:
Linear Mult. Alg. 71 (2023), no. 12, 1994-2007
We consider a Leibniz algebra ${\mathfrak L} = {\mathfrak I} \oplus {\mathfrak V}$ over an arbitrary base field $\mathbb{F}$, being ${\mathfrak I}$ the ideal generated by the products $[x,x], x \in {\mathfrak L}$. This ideal has a fundamental role in
Externí odkaz:
http://arxiv.org/abs/2401.13018
Publikováno v:
Mathematics 11 (2023) special Issue "Functional Analysis, Topology and Quantum Mechanics II", no. 3, 725
In this work we study a linear operator $f$ on a pre-euclidean space $\mathcal{V}$ by using properties of a corresponding graph. Given a basis $\B$ of $\mathcal{V}$, we present a decomposition of $\mathcal{V}$ as an orthogonal direct sum of certain l
Externí odkaz:
http://arxiv.org/abs/2401.12916
Autor:
Calderón, Antonio J., Sánchez, José M.
Publikováno v:
Modern Phys. Lett. A 28 (2013), no. 5, 1350008, 9 pp
We study the structure of weight modules $V$ with restrictions neither on the dimension nor on the base field, over split Lie algebras $L$. We show that if $L$ is perfect and $V$ satisfies $LV=V$ and ${\mathcal Z}(V)=0$, then $$\hbox{$L =\bigoplus\li
Externí odkaz:
http://arxiv.org/abs/2401.12906
Publikováno v:
Banach Journal of Mathematical Analysis 9 (2015), no. 2, 311-321
Consider a pseudo-$H$-space $E$ endowed with a separately continuous biadditive associative multiplication which induces a grading on $E$ with respect to an abelian group $G$. We call such a space a graded pseudo-$H$-ring and we show that it has the
Externí odkaz:
http://arxiv.org/abs/2401.12897
Autor:
Calderón, Antonio J., Sánchez, José M.
Publikováno v:
Linear Algebra Appl. 438 (2013), no. 12, 4709-4725
We study the structure of arbitrary split Leibniz superalgebras. We show that any of such superalgebras ${\frak L}$ is of the form ${\frak L} = {\mathcal U} + \sum_jI_j$ with ${\mathcal U}$ a subspace of an abelian (graded) subalgebra $H$ and any $I_
Externí odkaz:
http://arxiv.org/abs/2401.12886
Publikováno v:
J. Geom. Phys. 128 (2018) 1-11
We introduce the class of split regular Hom-Lie superalgebras as the natural extension of the one of split Hom-Lie algebras and Lie superalgebras, and study its structure by showing that an arbitrary split regular Hom-Lie superalgebra ${\frak L}$ is
Externí odkaz:
http://arxiv.org/abs/2401.13710
In this paper we generalize the Skjelbred Sund method, used to classify nilpotent Lie algebras, in order to classify triple systems with non zero annihilator. We develop this method with the purpose of classifying nilpotent Lie triple systems, obtain
Externí odkaz:
http://arxiv.org/abs/2209.06403
We introduce the class of graded Lie-Rinehart algebras as a natural generalization of the one of graded Lie algebras. For $G$ an abelian group, we show that if $L$ is a tight $G$-graded Lie-Rinehart algebra over an associative and commutative $G$-gra
Externí odkaz:
http://arxiv.org/abs/2202.12982