Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Calbet, Asier"'
Autor:
Calbet, Asier, Freschi, Andrea
For a family $\mathcal{F}$ of graphs, $sat(n,\mathcal{F})$ is the minimum number of edges in a graph $G$ on $n$ vertices which does not contain any of the graphs in $\mathcal{F}$ but such that adding any new edge to $G$ creates a graph in $\mathcal{F
Externí odkaz:
http://arxiv.org/abs/2401.10847
Autor:
Baber, Rahil, Behague, Natalie, Calbet, Asier, Ellis, David, Erde, Joshua, Gray, Ron, Ivan, Maria-Romina, Janzer, Barnabás, Johnson, Robert, Milićević, Luka, Talbot, John, Tan, Ta Sheng, Wickes, Belinda
One of the great pleasures of working with Imre Leader is to experience his infectious delight on encountering a compelling combinatorial problem. This collection of open problems in combinatorics has been put together by a subset of his former PhD s
Externí odkaz:
http://arxiv.org/abs/2310.18163
Autor:
Calbet, Asier
Given a graph $H$, we say that a graph $G$ is $H$-saturated if $G$ contains no copy of $H$ but adding any new edge to $G$ creates a copy of $H$. Let $sat(n,K_r,t)$ be the minimum number of edges in a $K_r$-saturated graph on $n$ vertices with minimum
Externí odkaz:
http://arxiv.org/abs/2302.13389
Autor:
Calbet, Asier
Publikováno v:
Discrete Mathematics, Volume 345, Issue 6, 2022, p. 112848, ISSN 0012-365X
A Boolean function $f:V \to \{-1,1\}$ on the vertex set of a graph $G=(V,E)$ is locally $p$-stable if for every vertex $v$ the proportion of neighbours $w$ of $v$ with $f(v)=f(w)$ is exactly $p$. This notion was introduced by Gross and Grupel in [1]
Externí odkaz:
http://arxiv.org/abs/2105.13154
Autor:
Calbet, Asier
Publikováno v:
In Discrete Mathematics June 2022 345(6)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.