Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Caicong Wu"'
Autor:
Gavriela Asiminari, Vasileios Moysiadis, Dimitrios Kateris, Patrizia Busato, Caicong Wu, Charisios Achillas, Claus Grøn Sørensen, Simon Pearson, Dionysis Bochtis
Publikováno v:
AgriEngineering, Vol 6, Iss 1, Pp 657-677 (2024)
Within the transition from precision agriculture (task-specific approach) to smart farming (system-specific approach) there is a need to build and evaluate robotic systems that are part of an overall integrated system under a continuous two-way conne
Externí odkaz:
https://doaj.org/article/5a3945528d9545ceb78159ccf7ff8527
Publikováno v:
PeerJ Computer Science, Vol 10, p e1945 (2024)
Field-road classification, which automatically identifies in-field activities and out-of-field activities in global navigation satellite system (GNSS) recordings, is an important step for the performance evaluation of agricultural machinery. Although
Externí odkaz:
https://doaj.org/article/094d6508fd734375b017019ad21fe9f1
Publikováno v:
Agronomy, Vol 13, Iss 5, p 1415 (2023)
The classification that distinguishes whether machines are driving on roads or working in fields based on their global navigation satellite system (GNSS) trajectories is essential for effective management of cross-regional agricultural machinery serv
Externí odkaz:
https://doaj.org/article/d75057ff9c474deb993cab2064b6b7a1
Autor:
Jia Qin, Ruizhi Sun, Kun Zhou, Yuanyuan Xu, Banghao Lin, Lili Yang, Zhibo Chen, Long Wen, Caicong Wu
Publikováno v:
Agronomy, Vol 13, Iss 3, p 650 (2023)
With advances in precision agriculture, autonomous agricultural machines can reduce human labor, optimize workflow, and increase productivity. Accurate and reliable obstacle-detection and avoidance systems are essential for ensuring the safety of aut
Externí odkaz:
https://doaj.org/article/99bcb480b17b472184737a6b2b5a1633
Publikováno v:
Agriculture, Vol 12, Iss 11, p 1837 (2022)
Identifying the in-field trajectories of harvests is important for the activity analysis of agricultural machinery. This paper presents a K-means-based trajectory identification method that can automatically detect the “turning”, “working”, a
Externí odkaz:
https://doaj.org/article/1c72c96fcf2f4bb780ff823d67ed8293
Autor:
Caicong Wu, Zhibo Chen, Dongxu Wang, Bingbing Song, Yajie Liang, Lili Yang, Dionysis D. Bochtis
Publikováno v:
Energies, Vol 13, Iss 4, p 775 (2020)
In large-scale arable farming, multiple sequential operations involving multiple machines must be carried out simultaneously due to restrictions of short time windows. However, the coordination and planning of multiple sequential operations is a nont
Externí odkaz:
https://doaj.org/article/a8cee35e06744373bbfb4c7a1b15c780
Publikováno v:
In IFAC PapersOnLine 2018 51(17):626-630
Publikováno v:
Journal of Soils and Sediments. 23:998-1007
Agricultural machinery management is the key to agricultural production, andtrajectory segmentation lays an important foundation for machinerymanagement. For big data platform of agricultural machinery, it is hoped tosimultaneously improve both of se
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6b12fc199118c19a472cde327a82c12a
https://doi.org/10.21203/rs.3.rs-2571849/v1
https://doi.org/10.21203/rs.3.rs-2571849/v1
Publikováno v:
Applied Engineering in Agriculture. 38:227-242
HighlightsAn evaluation system for agricultural machinery operation was developed.Quantitatively evaluating agricultural machinery operators can support the precision management for agricultural machinery service organizations.The evaluation system c