Zobrazeno 1 - 10
of 187
pro vyhledávání: '"Caflisch, Russel"'
Autor:
Caflisch, Russel, Yang, Yunan
This survey explores the development of adjoint Monte Carlo methods for solving optimization problems governed by kinetic equations, a common challenge in areas such as plasma control and device design. These optimization problems are particularly de
Externí odkaz:
http://arxiv.org/abs/2401.08361
Particle methods based on evolving the spatial derivatives of the solution were originally introduced to simulate reaction-diffusion processes, inspired by vortex methods for the Navier--Stokes equations. Such methods, referred to as gradient random
Externí odkaz:
http://arxiv.org/abs/2308.02904
We derive an adjoint method for the Direct Simulation Monte Carlo (DSMC) method for the spatially homogeneous Boltzmann equation with a general collision law. This generalizes our previous results in [Caflisch, R., Silantyev, D. and Yang, Y., 2021. J
Externí odkaz:
http://arxiv.org/abs/2207.11579
Publikováno v:
Journal of Computational Physics, 2021, 110404, ISSN 0021-9991. (https://www.sciencedirect.com/science/article/pii/S0021999121002990)
Applications for kinetic equations such as optimal design and inverse problems often involve finding unknown parameters through gradient-based optimization algorithms. Based on the adjoint-state method, we derive two different frameworks for approxim
Externí odkaz:
http://arxiv.org/abs/2009.01363
Publikováno v:
In Journal of Computational Physics 1 September 2023 488
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Computational Physics 15 August 2021 439
Autor:
Barekat, Farzin, Yin, Ke, Caflisch, Russel E., Osher, Stanley J., Lai, Rongjie, Ozolins, Vidvuds
We propose a method for calculating Wannier functions of periodic solids directly from a modified variational principle for the energy, subject to the requirement that the Wannier functions are orthogonal to all their translations ("shift-orthogonali
Externí odkaz:
http://arxiv.org/abs/1403.6883
This paper presents a fast algorithm for projecting a given function to the set of shift orthogonal functions (i.e. set containing functions with unit $L^2$ norm that are orthogonal to their prescribed shifts). The algorithm can be parallelized easil
Externí odkaz:
http://arxiv.org/abs/1402.5158
Sparsity plays a central role in recent developments in signal processing, linear algebra, statistics, optimization, and other fields. In these developments, sparsity is promoted through the addition of an $L^1$ norm (or related quantity) as a constr
Externí odkaz:
http://arxiv.org/abs/1311.5850