Zobrazeno 1 - 10
of 31
pro vyhledávání: '"CURRY, CLINTON P."'
Autor:
Curry, Clinton P.
Thesis (Ph. D.)--University of Alabama at Birmingham, 2009.
Title from PDF title page (viewed Sept. 2, 2009). Additional advisors: Alexander Blokh, Lex G. Oversteegen, Purushotham Bangalore, Vo Thanh Liem, Kyle Siegrist. Degree earned with the c
Title from PDF title page (viewed Sept. 2, 2009). Additional advisors: Alexander Blokh, Lex G. Oversteegen, Purushotham Bangalore, Vo Thanh Liem, Kyle Siegrist. Degree earned with the c
Externí odkaz:
https://www.mhsl.uab.edu/dt/2009p/curry.pdf
Publikováno v:
Disc. and Cont. Dyn. Syst., vol. 32 (2012), 2027--2039
Thurston introduced $\si_d$-invariant laminations (where $\si_d(z)$ coincides with $z^d:\ucirc\to \ucirc$, $d\ge 2$). He defined \emph{wandering $k$-gons} as sets $\T\subset \ucirc$ such that $\si_d^n(\T)$ consists of $k\ge 3$ distinct points for all
Externí odkaz:
http://arxiv.org/abs/1104.4130
Publikováno v:
Proc. Amer. Math. Soc., vol. 141 (2013), 1437-1449
A compactum $X\subset \C$ is unshielded if it coincides with the boundary of the unbounded component of $\C\sm X$. Call a compactum $X$ finitely Suslinian if every collection of pairwise disjoint subcontinua of $X$ whose diameters are bounded away fr
Externí odkaz:
http://arxiv.org/abs/1009.1565
Autor:
Curry, Clinton P.
Publikováno v:
Journal of Difference Equations and Applications, Volume 16, Issue 5 & 6 May 2010, pages 443 - 450
We prove that a polynomial Julia set which is a finitely irreducible continuum is either an arc or an indecomposable continuum. For the more general case of rational functions, we give a topological model for the dynamics when the Julia set is an irr
Externí odkaz:
http://arxiv.org/abs/1006.5771
Autor:
Curry, Clinton P., Mayer, John C.
Publikováno v:
Journal of Difference Equations and Applications, Volume 16, Issue 5 & 6 May 2010 , pages 435 - 441
We give an introduction to buried points in Julia sets and a list of questions about buried points, written to encourage aficionados of topology and dynamics to work on these questions.
Comment: 10 pages, 2 figures
Comment: 10 pages, 2 figures
Externí odkaz:
http://arxiv.org/abs/0810.4205
Autor:
Curry, Clinton P.
Publikováno v:
Topology Proc. 33 (2009), 251--268
We prove two theorems which allow one to recognize indecomposable subcontinua of closed surfaces without boundary. If $X$ is a subcontinuum of a closed surface $S$, we call the components of $S \setminus X$ the complementary domains of $X$. We prove
Externí odkaz:
http://arxiv.org/abs/0806.4009
Publikováno v:
Ergodic Theory Dynam. Systems 29 (2009), no. 3, 875--883
Makienko's conjecture, a proposed addition to Sullivan's dictionary, can be stated as follows: The Julia set of a rational function R has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R
Externí odkaz:
http://arxiv.org/abs/0805.3323
Publikováno v:
Proceedings of the American Mathematical Society. Volume 136, Number 11, November 2008, Pages 4045--4055.
We show that a plane continuum X is indecomposable iff X has a sequence (U_n) of not necessarily distinct complementary domains satisfying what we call the double-pass condition: If one draws an open arc A_n in each U_n whose ends limit into the boun
Externí odkaz:
http://arxiv.org/abs/0805.3320
Publikováno v:
In Advances in Mathematics 2011 226(2):1621-1661
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.