Zobrazeno 1 - 10
of 199
pro vyhledávání: '"CONTI, MONICA"'
We study the Cahn-Hilliard equation with non-degenerate concentration-dependent mobility and logarithmic potential in two dimensions. We show that any weak solution is unique, exhibits propagation of uniform-in-time regularity, and stabilizes towards
Externí odkaz:
http://arxiv.org/abs/2410.22234
We study the energy transfer in the linear system $$ \begin{cases} \ddot u+u+\dot u=b\dot v\\ \ddot v+v-\epsilon \dot v=-b\dot u \end{cases} $$ made by two coupled differential equations, the first one dissipative and the second one antidissipative.
Externí odkaz:
http://arxiv.org/abs/2108.12776
We address the energy transfer in the differential system $$ \begin{cases} u_{ttt}+\alpha u_{tt} - \beta \Delta u_t - \gamma \Delta u = -\eta \Delta \theta \\ \theta_t - \kappa \Delta \theta =\eta \Delta u_{tt}+ \alpha\eta \Delta u_t \end{cases} $$ m
Externí odkaz:
http://arxiv.org/abs/2106.12402
We consider the MGT equation with memory $$\partial_{ttt} u + \alpha \partial_{tt} u - \beta \Delta \partial_{t} u - \gamma\Delta u + \int_{0}^{t}g(s) \Delta u(t-s) ds = 0.$$ We prove an existence and uniqueness result removing the convexity assumpti
Externí odkaz:
http://arxiv.org/abs/2106.12391
Publikováno v:
In Journal of Differential Equations 15 February 2024 382:50-76
Publikováno v:
In Journal of Functional Analysis 15 May 2022 282(10)
Given $\rho\in[0,1]$, we consider for $\varepsilon\in(0,1]$ the nonautonomous viscoelastic equation with a singularly oscillating external force $$ \partial_{tt} u-\kappa(0)\Delta u - \int_0^\infty \kappa'(s)\Delta u(t-s) d s +f(u)=g_{0}(t)+\varepsil
Externí odkaz:
http://arxiv.org/abs/1607.02732
We continue the analysis on the model equation arising in the theory of viscoelasticity $$ \partial_{tt} u(t)-\big[1+k_t(0)\big]\Delta u(t) -\int_0^\infty k'_t(s)\Delta u(t-s) d s + f(u(t)) = g $$ in the presence of a (convex, nonnegative and summabl
Externí odkaz:
http://arxiv.org/abs/1603.07536
We consider the model equation arising in the theory of viscoelasticity $$\partial_{tt} u-h_t(0)\Delta u -\int_{0}^\infty h_t'(s)\Delta u(t-s)d s+ f(u) = g.$$ Here, the main feature is that the memory kernel $h_t(\cdot)$ depends on time, allowing for
Externí odkaz:
http://arxiv.org/abs/1603.07164
Publikováno v:
In Journal of Differential Equations 5 November 2020 269(10):7862-7880