Zobrazeno 1 - 10
of 129
pro vyhledávání: '"CHRISTIAN BONATTI"'
Autor:
CHRISTIAN BONATTI, IOANNIS IAKOVOGLOU
Publikováno v:
Ergodic Theory and Dynamical Systems. 43:1129-1188
Every Anosov flow on a 3-manifold is associated to a bifoliated plane (a plane endowed with two transverse foliations $F^s$ and $F^u$ ) which reflects the normal structure of the flow endowed with the center-stable and center-unstable foliations. A f
Autor:
Jinhua Zhang, Christian Bonatti
Publikováno v:
Science China Mathematics
Science China Mathematics, Science China Press, 2020, 63 (9), pp.1647-1670. ⟨10.1007/s11425-019-1751-2⟩
Science China Mathematics, Science China Press, 2020, 63 (9), pp.1647-1670. ⟨10.1007/s11425-019-1751-2⟩
In this paper, we study transitive partially hyperbolic diffeomorphisms with one-dimensional topologically neutral center, meaning that the length of the iterate of small center segments remains small. Such systems are dynamically coherent. We show t
Publikováno v:
Asterisque
Asterisque, Société Mathématique de France, 2020, 415, pp.157-180. ⟨10.24033/ast.1103⟩
Asterisque, Société Mathématique de France, 2020, 415, pp.157-180. ⟨10.24033/ast.1103⟩
We consider the action of $SL(2,\mathbb{R})$ on a vector bundle $\mathbf{H}$ preserving an ergodic probability measure $\nu$ on the base $X$. Under an irreducibility assumption on this action, we prove that if $\hat\nu$ is any lift of $\nu$ to a prob
Publikováno v:
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2021, 22 (4), pp.1643-1672. ⟨10.2422/2036-2145.202001_014⟩
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, Scuola Normale Superiore 2021, 22 (4), pp.1643-1672. ⟨10.2422/2036-2145.202001_014⟩
We prove that for some manifolds $M$ the set of robustly transitive partially hyperbolic diffeomorphisms of $M$ with one-dimensional nonhyperbolic centre direction contains a $C^1$-open and dense subset of diffeomorphisms with nonhyperbolic measures
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::62ddf962eb01bb97493302361811d3c3
https://hal.science/hal-03860928
https://hal.science/hal-03860928
Autor:
Christian Bonatti, Adriana da Luz
Publikováno v:
Journal of the European Mathematical Society
Journal of the European Mathematical Society, European Mathematical Society, 2021, 23 (8), pp.2649-2705. ⟨10.4171/JEMS/1064⟩
Journal of the European Mathematical Society, European Mathematical Society, 2021, 23 (8), pp.2649-2705. ⟨10.4171/JEMS/1064⟩
A vector field X is called a star flow if every periodic orbit, of any vector field C1-close to X, is hyperbolic. It is known that the chain recurrence classes of a generic star flow X on a 3 or 4 manifold are either hyperbolic or singular hyperbolic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed86b9e69c07c64f16f7eb50b9f6c8d4
https://hal.archives-ouvertes.fr/hal-02370538
https://hal.archives-ouvertes.fr/hal-02370538
Autor:
Tali Pinsky, Christian Bonatti
Publikováno v:
Nonlinearity
Nonlinearity, IOP Publishing, 2021, ⟨10.1088/1361-6544/abf8fa⟩
Nonlinearity, IOP Publishing, 2021, 34 (6), pp.4315-4331. ⟨10.1088/1361-6544/abf8fa⟩
Nonlinearity, IOP Publishing, 2021, ⟨10.1088/1361-6544/abf8fa⟩
Nonlinearity, IOP Publishing, 2021, 34 (6), pp.4315-4331. ⟨10.1088/1361-6544/abf8fa⟩
We define an extension of the geometric Lorenz model, defined on the three sphere. This geometric model has an invariant one dimensional trefoil knot, a union of invariant manifolds of the singularities. It is similar to the invariant trefoil knot ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c35b40bfbd048cf0033cfd705d8386c4
https://hal.archives-ouvertes.fr/hal-03403521
https://hal.archives-ouvertes.fr/hal-03403521
Existence of common zeros for commuting vector fields on 3‐manifolds II. Solving global difficulties
Publikováno v:
Proceedings of the London Mathematical Society
Proceedings of the London Mathematical Society, London Mathematical Society, 2020, 121 (4), pp.828-875. ⟨10.1112/plms.12342⟩
Proceedings of the London Mathematical Society, London Mathematical Society, 2020, 121 (4), pp.828-875. ⟨10.1112/plms.12342⟩
We address the following conjecture about the existence of common zeros for commuting vector fields in dimension three: if $X,Y$ are two $C^1$ commuting vector fields on a $3$-manifold $M$, and $U$ is a relatively compact open such that $X$ does not
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d51e9be50d6e22c7a51a9da776993eec
https://hal.archives-ouvertes.fr/hal-03036013
https://hal.archives-ouvertes.fr/hal-03036013
Publikováno v:
Discrete and Continuous Dynamical Systems-Series A
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2020, 40 (1), pp.441-465. ⟨10.3934/dcds.2020017⟩
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2020, 40 (1), pp.441-465. ⟨10.3934/dcds.2020017⟩
We present an example of a C1 Anosov diffeomorphism of a two-torus with a physical measure such that its basin has full Lebesgue measure and its support is a horseshoe of zero measure.
19 pages, 3 figures. Rewrote the second page of Introduction
19 pages, 3 figures. Rewrote the second page of Introduction
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cbe58a17702665d56c9b37e9d5db796c
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02524815
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02524815
Publikováno v:
2018 MATRIX Annals ISBN: 9783030382292
We explore some constructions of projectively Anosov flows on hyperbolic 3-manifolds that may lead to new ways to construct pairs of transverse taut contact forms and foliations.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::94f56adc3af346ae17ae1657a10921ce
https://doi.org/10.1007/978-3-030-38230-8_24
https://doi.org/10.1007/978-3-030-38230-8_24
Publikováno v:
Israel Journal of Mathematics
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Israël Journal of Mathematics
Israël Journal of Mathematics, Hebrew University Magnes Press, 2018, 226 (1), pp.387-417. ⟨10.1007/s11856-018-1699-8⟩
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Israël Journal of Mathematics
Israël Journal of Mathematics, Hebrew University Magnes Press, 2018, 226 (1), pp.387-417. ⟨10.1007/s11856-018-1699-8⟩
In the uniformly hyperbolic setting it is well known that the set of all measures supported on periodic orbits is dense in the convex space of all invariant measures. In this paper we consider the converse question, in the non-uniformly hyperbolic se