Zobrazeno 1 - 10
of 784
pro vyhledávání: '"CHEN, ZHIQI"'
Autor:
Zhang, Hui, Chen, Zhiqi
Publikováno v:
Comptes Rendus. Mathématique, Vol 358, Iss 2, Pp 143-149 (2020)
Let $G$ be a Lorentzian Lie group or a pseudo-Riemannian Lie group of type $(n-2,2)$. If $G$ admits a non-Killing left-invariant conformal vector field, then $G$ is solvable.
Externí odkaz:
https://doaj.org/article/6d040b65e9f74153bc3f8f1de271bcb6
Autor:
Chen, Zhiqi, Li, Runhan, Bai, Yingxi, Mao, Ning, Zeer, Mahmoud, Go, Dongwook, Dai, Ying, Huang, Baibiao, Mokrousov, Yuriy, Niu, Chengwang
Recent advances in manipulation of orbital angular momentum (OAM) within the paradigm of orbitronics present a promising avenue for the design of future electronic devices. In this context, the recently observed orbital Hall effect (OHE) occupies a s
Externí odkaz:
http://arxiv.org/abs/2404.07820
In this paper, we obtain a rich family of identities for transposed Poisson $n$-Lie algebras, and then prove the conjecture of Bai, Bai, Guo and Wu in \cite{BBGW} under certain strong condition.
Comment: 25 pages
Comment: 25 pages
Externí odkaz:
http://arxiv.org/abs/2312.04010
In this paper, we investigate metric Jordan algebras, and follow the lines of the paper (J. Milnor: Curvatures of left invariant metrics on Lie groups. Adv. Math. (1976)). Firstly, we define the Jordan-Levi-Civita connection, then we show that every
Externí odkaz:
http://arxiv.org/abs/2309.02682
The geodesic orbit property is useful and interesting in itself, and it plays a key role in Riemannian geometry. It implies homogeneity and has important classes of Riemannian manifolds as special cases. Those classes include weakly symmetric Riemann
Externí odkaz:
http://arxiv.org/abs/2307.07937
We consider the moment map $m:\mathbb{P}V_n\rightarrow \text{i}\mathfrak{u}(n)$ for the action of $\text{GL}(n)$ on $V_n=\otimes^{2}(\mathbb{C}^{n})^{*}\otimes\mathbb{C}^{n}$, and study the functional $F_n=\|m\|^{2}$ restricted to the projectivizatio
Externí odkaz:
http://arxiv.org/abs/2301.13203
In this paper, we study admissible $\omega$-left-symmetric algebraic structures on $\omega$-Lie algebras over the complex numbers field $\mathbb C$. Based on the classification of $\omega$-Lie algebras, we prove that any perfect $\omega$-Lie algebra
Externí odkaz:
http://arxiv.org/abs/2301.12953
Zusmanovich gave a fundamental result on the structure of $\omega$-Lie algebras. But up to now, the classification of $\omega$-Lie algebras is still open. In this paper, we give a complete classification of $\omega$-Lie algebras over $\mathbb C$.
Externí odkaz:
http://arxiv.org/abs/2211.09026