Zobrazeno 1 - 10
of 1 721
pro vyhledávání: '"CHAN C. Y."'
We study affine semigroup rings as algebras over subsemigroup rings. From this relative viewpoint with respect to a given subsemigroup ring, the fibered sum of two affine semigroup algebras is constructed. Such a construction is compared to the tenso
Externí odkaz:
http://arxiv.org/abs/2403.06219
Autor:
Berkesch, Christine, Chan, C-Y. Jean, Klein, Patricia, Matusevich, Laura Felicia, Page, Janet, Vassilev, Janet
Publikováno v:
Alg. Number Th. 17 (2023) 1959-1984
We give explicit descriptions of rings of differential operators of toric face rings in characteristic $0$. For quotients of normal affine semigroup rings by radical monomial ideals, we also identify which of their differential operators are induced
Externí odkaz:
http://arxiv.org/abs/2112.00266
Autor:
Chan, C-Y. Jean
We discuss Hilbert-Kunz function from when it was originally defined to its recent developments. A brief history of Hilbert-Kunz theory is first recounted. Then we review several techniques involved in the study of Hilbert-Kunz functions by presentin
Externí odkaz:
http://arxiv.org/abs/2106.14053
Autor:
Berkesch, Christine, Chan, C-Y. Jean, Klein, Patricia, Matusevich, Laura Felicia, Page, Janet, Vassilev, Janet
Through examples, we illustrate how to compute differential operators on a quotient of an affine semigroup ring by a radical monomial ideal, when working over an algebraically closed field of characteristic 0.
Comment: 30 pages, 17 figures
Comment: 30 pages, 17 figures
Externí odkaz:
http://arxiv.org/abs/2105.04074
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chan, C. -Y. Jean, Kurano, Kazuhiko
The aim of this manuscript is to discuss the Hilbert-Kunz functions over an excellent local ring regular in codimension one. We study the shape of the Hilbert-Kunz functions of modules and discuss the properties of the coefficient of the second highe
Externí odkaz:
http://arxiv.org/abs/1301.5278
Autor:
Chan, C. -Y. Jean, Kurano, Kazuhiko
The aim of this paper is to define the notion of the Cohen-Macaulay cone of a Noetherian local domain R and to present its application to the theory of Hilbert-Kunz functions. It has been shown in Kurano's paper "Numerical equivalence defined on Chow
Externí odkaz:
http://arxiv.org/abs/1211.4016
Let S be a standard N^r-graded algebra over a local ring A, and let M be a finitely generated Z^r-graded S-module. We characterize the Cohen-Macaulayness of M in terms of the vanishing of certain sheaf cohomology modules. As a consequence, we apply o
Externí odkaz:
http://arxiv.org/abs/0705.1839
Over a regular local ring of dimension two with maximal ideal m, we study the Buchsbaum-Rim multiplicity of a finitely generated module M of finite colength in a free module F. First, we investigate the colength of an m-primary ideal and its Hilbert-
Externí odkaz:
http://arxiv.org/abs/math/0606413