Zobrazeno 1 - 5
of 5
pro vyhledávání: '"CHAN, K. M. D."'
The aim of this short note is twofold. We formulate the general Kermack-McKendrick epidemic model incorporating static heterogeneity and show how it simplifies to a scalar Renewal Equation (RE) when separable mixing is assumed. A key feature is that
Externí odkaz:
http://arxiv.org/abs/2307.16749
Autor:
Chan, K. M. D., Mandjes, M. R. H.
This paper consider a highly general dissemination model that keeps track of the stochastic evolution of the distribution of wealth over a set of agents. There are two types of events: (i) units of wealth externally arrive, and (ii) units of wealth a
Externí odkaz:
http://arxiv.org/abs/2207.04737
Autor:
Chan, K. M. D.1,2 (AUTHOR) k.m.d.chan@uva.nl, Mandjes, M. R. H.1 (AUTHOR)
Publikováno v:
Methodology & Computing in Applied Probability. Sep2023, Vol. 25 Issue 3, p1-25. 25p.
Publikováno v:
Mathematics in Applied Sciences & Engineering; 2024, Vol. 5 Issue 1, p1-35, 35p
Autor:
Bootsma MCJ; Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.; Department of Mathematics, Faculty of Science, Utrecht University, Utrecht, The Netherlands., Chan KMD; Korteweg-de Vries Institute, University of Amsterdam, Amsterdam, The Netherlands.; Transtrend BV, Rotterdam, The Netherlands., Diekmann O; Department of Mathematics, Faculty of Science, Utrecht University, Utrecht, The Netherlands., Inaba H; Faculty of Education, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan.
Publikováno v:
Mathematical biosciences and engineering : MBE [Math Biosci Eng] 2023 Sep 15; Vol. 20 (10), pp. 17661-17671.