Zobrazeno 1 - 10
of 122
pro vyhledávání: '"CHAIPUNYA, PARIN"'
Autor:
Aussel, Didier, Chaipunya, Parin
Local solutions for variational and quasi-variational inequalities are usually the best type of solutions that could practically be obtained when in case of lack of convexity or else when available numerical techniques are too limited for global solu
Externí odkaz:
http://arxiv.org/abs/2402.02115
Publikováno v:
Carpathian Journal of Mathematics, 2024 Jan 01. 40(1), 65-76.
Externí odkaz:
https://www.jstor.org/stable/27259297
Publikováno v:
Carpathian Journal of Mathematics, 2023 Jan 01. 39(1), 95-107.
Externí odkaz:
https://www.jstor.org/stable/27178477
Publikováno v:
Open Mathematics, Vol 21, Iss 1, Pp 70-82 (2023)
In this article, we prove ergodic convergence for a sequence of nonexpansive mappings in Hadamard (complete CAT(0){\rm{CAT}}\left(0)) spaces. Our result extends the nonlinear ergodic theorem by Baillon for nonexpansive mappings from Hilbert spaces to
Externí odkaz:
https://doaj.org/article/93ad94dc39ab4aac851b7e3c8bce6600
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The aim of this article is to introduce an iterative algorithm for finding a common solution from the set of an equilibrium point for a bifunction and the set of a singularity of an inclusion problem on an Hadamard manifold. We also discuss some part
Externí odkaz:
http://arxiv.org/abs/1907.00364
In this paper, we discuss about monotone vector fields, which is a typical extension to the theory of convex functions, by exploiting the tangent space structure. This new approach to monotonicity in CAT(0) spaces stands in opposed to the monotonicit
Externí odkaz:
http://arxiv.org/abs/1906.05984
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chaipunya, Parin
In this paper, we discuss the fixed point property for an infinite family of order-preserving mappings which satisfy the Lipschitzian condition on comparable pairs. The underlying framework of our main results is a metric space of any global upper cu
Externí odkaz:
http://arxiv.org/abs/1811.11585
Autor:
Kumam, Poom, Chaipunya, Parin
In this paper, we consider the equilibrium problems and also their regularized problems under the setting of Hadamard spaces. The solution to the regularized problem is represented in terms of resolvent operators. As an essential machinery in the exi
Externí odkaz:
http://arxiv.org/abs/1807.10900