Zobrazeno 1 - 10
of 10
pro vyhledávání: '"CARLOS CUEVAS COVARRUBIAS"'
Publikováno v:
Revista de Matemática: Teoría y Aplicaciones, Vol 23, Iss 1, Pp 143-154 (2017)
k-NN algorithms are frequently used in statistical classification. They are accurate and distribution free. Despite these advantages, k-NN algorithms imply a high computational cost. To find efficient ways to implement them is an important challenge
Externí odkaz:
https://doaj.org/article/13167d0173674590a459ce2675773a1f
Publikováno v:
Revista de Matemática: Teoría y Aplicaciones, Vol 24, Iss 1, Pp 115-127 (2017)
We consider the statistical supervised classification problem from adynamical systems approach. We assume that two classes exist and that, for each one, a multivariate normal distribution determines the probability to be in a certain region in then
Externí odkaz:
https://doaj.org/article/a10a3525de3b4883a6bd6e4583d47e42
Publikováno v:
Health. 13:1112-1128
The present study was conducted in order to establish factors that can potentially facilitate crime, as well as the status of the emotional wellbeing presented in the prison population. The sample was composed of 358 inmates of the Federal Center for
Publikováno v:
Revista de Matemática: Teoría y Aplicaciones, Vol 18, Iss 1, Pp 21-32 (2011)
k-NN criteria are non parametric methods of statistical classificaction. They are accurate, versatile and distribution free. However, their computational cost may be too expensive; especially for large sample sizes. We present a new condensation algo
Externí odkaz:
https://doaj.org/article/7246cbac603746af987a46fd98d5d52f
Publikováno v:
Revista de Matemática Teoría y Aplicaciones, Volume: 24, Issue: 1, Pages: 115-127, Published: JUN 2017
Revista de Matemática: Teoría y Aplicaciones, Vol 24, Iss 1, Pp 115-127 (2017)
Revista de Matemática: Teoría y Aplicaciones; Vol. 24 No. 1 (2017): Revista de Matemática: Teoría y Aplicaciones; 115-127
Revista de Matemática: Teoría y Aplicaciones; Vol. 24 Núm. 1 (2017): Revista de Matemática: Teoría y Aplicaciones; 115-127
Revista de Matemática; Vol. 24 N.º 1 (2017): Revista de Matemática: Teoría y Aplicaciones; 115-127
Portal de Revistas UCR
Universidad de Costa Rica
instacron:UCR
Revista de Matemática: Teoría y Aplicaciones, Vol 24, Iss 1, Pp 115-127 (2017)
Revista de Matemática: Teoría y Aplicaciones; Vol. 24 No. 1 (2017): Revista de Matemática: Teoría y Aplicaciones; 115-127
Revista de Matemática: Teoría y Aplicaciones; Vol. 24 Núm. 1 (2017): Revista de Matemática: Teoría y Aplicaciones; 115-127
Revista de Matemática; Vol. 24 N.º 1 (2017): Revista de Matemática: Teoría y Aplicaciones; 115-127
Portal de Revistas UCR
Universidad de Costa Rica
instacron:UCR
We consider the statistical supervised classification problem from a dynamical systems approach. We assume that two classes exist and that, for each one, a multivariate normal distribution determines the probability to be in a certain region in the n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c1c78d6aa0255c4bf24c55c01e706f8
http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332017000100115&lng=en&tlng=en
http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332017000100115&lng=en&tlng=en
Publikováno v:
Revista de Matemática Teoría y Aplicaciones, Volume: 23, Issue: 1, Pages: 143-154, Published: JUN 2016
ResumenLos algoritmos de vecinos cercanos (k-NN) son métodos ampliamente empleados en la clasificación estadística. Los cuales destacan por ser precisos y por no depender de ningún supuesto distribucional. A pesar de estas ventajas tienen el inco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::532c31a7892dfbda1e84758fb60e4aa6
http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332016000100143&lng=en&tlng=en
http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-24332016000100143&lng=en&tlng=en
Publikováno v:
Algorithms from and for Nature and Life ISBN: 9783319000343
Algorithms from and for Nature and Life
Algorithms from and for Nature and Life
Principal Components Analysis (PCA) is a mathematical technique widely used in multivariate statistics and pattern recognition. From a statistical point of view, PCA is an optimal linear transformation that eliminates the covariance structure of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::70b2baf719c856948cb825b41b4f694a
https://doi.org/10.1007/978-3-319-00035-0_18
https://doi.org/10.1007/978-3-319-00035-0_18
Autor:
Carlos Cuevas-Covarrubias
Publikováno v:
Algorithms from and for Nature and Life ISBN: 9783319000343
Algorithms from and for Nature and Life
Algorithms from and for Nature and Life
Given a p-dimensional random variable X, Principal Components Analysis defines its optimal representation in a lower dimensional space. In this article we assume that X is distributed according to a Mixture of two Multivariate Normal Distributions an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f9be2117bb9202188e0841cb653899e6
https://doi.org/10.1007/978-3-319-00035-0_17
https://doi.org/10.1007/978-3-319-00035-0_17
Autor:
Tadashi Imaizumi, Akinori Okada, Sadaaki Miyamoto, Fumitake Sakaori, Yoshiro Yamamoto, Maurizio Vichi
This edited volume focuses on the latest developments in classification and data science and covers a wide range of topics in the context of data analysis and related areas, e.g. the analysis of complex data, analysis of qualitative data, methods for
This volume provides approaches and solutions to challenges occurring at the interface of research fields such as, e.g., data analysis, data mining and knowledge discovery, computer science, operations research, and statistics. In addition to theory-