Zobrazeno 1 - 10
of 69
pro vyhledávání: '"CARLO MANTEGAZZA"'
Autor:
Riccardo Benedetti, Carlo Mantegazza
Publikováno v:
Atti della Accademia Peloritana dei Pericolanti : Classe di Scienze Fisiche, Matematiche e Naturali, Vol 102, Iss 2, p SA1 (2024)
In questo lavoro intendiamo presentare, almeno in parte, l’imponente intreccio di idee, tecniche e concetti che si è sviluppato intorno alla congettura di Poincaré, dalla sua formulazione agli inizi del secolo scorso fino alla soluzione data da G
Externí odkaz:
https://doaj.org/article/e993f802755d40c9873e7a50e639dd72
Publikováno v:
Mathematics in Engineering, Vol 5, Iss 1, Pp 1-15 (2023)
We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R. Hamilton did in [5] for the stan
Externí odkaz:
https://doaj.org/article/4335fe990f314764b037fcd9e8f0406e
Publikováno v:
Mathematics in Engineering, Vol 4, Iss 6, Pp 1-104 (2022)
In this survey we present the state of the art about the asymptotic behavior and stability of the modified Mullins–Sekerka flow and the surface diffusion flow of smooth sets, mainly due to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discu
Externí odkaz:
https://doaj.org/article/94d54c76234d45879ea9af857a4bf65e
Publikováno v:
Mathematics in Engineering, Vol 4, Iss 1, Pp 1-15 (2022)
We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds of dimension $ n \geq 5 $ with
Externí odkaz:
https://doaj.org/article/fd89ba2ef6094591a24359db3256d5f1
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2022:189-221
The motion by curvature of networks is the generalization to finite union of curves of the curve shortening flow. This evolution has several peculiar features, mainly due to the presence of junctions where the curves meet. In this paper we show that
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 202:827-850
We derive an adaptation of Li and Yau estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative Ricci tensor. We then apply these estimates to obtain a Harnack inequality and to discuss monotonicity, conve
Autor:
Carlo Mantegazza
Publikováno v:
Proceedings of the American Mathematical Society. 150:1745-1748
We show by an elementary argument that the second fundamental form of a connected, totally umbilical hypersurface of class C 2 C^2 is a constant multiple of the metric tensor. It follows that the hypersurface is smooth and it is either a piece of a h
Publikováno v:
Mathematics in Engineering, Vol 4, Iss 1, Pp 1-15 (2022)
We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $ on complete Riemannian manifolds of dimension $ n \geq 5 $ with
In this note, our aim is to show that families of smooth hypersurfaces of $\mathbb R^{n+1}$ which are all $C^1$--close enough to a fixed compact, embedded one, have uniformly bounded constants in some relevant inequalities for mathematical analysis,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d7f77c91228d7f0f6e16d19c4c13adc8
Autor:
Carlo Mantegazza
Publikováno v:
Università degli Studi di Napoli Federico II