Zobrazeno 1 - 10
of 4 082
pro vyhledávání: '"CAMPEDELLI, A."'
Autor:
Wali, Haseeb1 (AUTHOR) haseebwali52@yahoo.com, Iqbal, Sohail1 (AUTHOR) sohail_iqbal@comsats.edu.pk
Publikováno v:
Mathematics (2227-7390). Oct2024, Vol. 12 Issue 19, p3123. 13p.
Autor:
Haseeb Wali, Sohail Iqbal
Publikováno v:
Mathematics, Vol 12, Iss 19, p 3123 (2024)
In this paper, we construct two deformations of the Godeaux surface with π1≅Z4, such that each central fibre contains a family of conics. We show that surfaces that are birational to these Godeaux surfaces exist in two connected components of the
Externí odkaz:
https://doaj.org/article/df4c24cbf8aa4dc6989aa60e07a4962e
Autor:
Laterveer, Robert
We prove Bloch's conjecture for numerical Campedelli surfaces with fundamental group of order $9$.
Comment: 17 pages, to appear in Asian J. of Math., comments still welcome !
Comment: 17 pages, to appear in Asian J. of Math., comments still welcome !
Externí odkaz:
http://arxiv.org/abs/2004.12089
Autor:
Brigitte Urbani
Publikováno v:
Italies, Vol 26, Pp 292-295 (2023)
Externí odkaz:
https://doaj.org/article/e8066b274c954702a8b828656bfbfc3d
Autor:
Campedelli, Gian Maria, Penzo, Nicolò, Stefan, Massimo, Dessì, Roberto, Guerini, Marco, Lepri, Bruno, Staiano, Jacopo
As Large Language Model (LLM)-based agents become increasingly autonomous and will more freely interact with each other, studying interactions between them becomes crucial to anticipate emergent phenomena and potential risks. Drawing inspiration from
Externí odkaz:
http://arxiv.org/abs/2410.07109
Autor:
Oudompheng, Rémy
We define a period map for classical Campedelli surfaces, using a covering trick as in the case of Enriques surfaces: the period map is shown to come from a family of Enriques surfaces, obtained as quotients of the Campedelli surface by an involution
Externí odkaz:
http://arxiv.org/abs/1106.4846
Publikováno v:
Transactions of the American Mathematical Society, 2009 Sep 01. 361(9), 4999-5021.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9947-09-04716-3
We produce a family of numerical Campedelli surfaces with \Z/6 torsion by constructing the (Gorenstein codimension 5) canonical ring of the \'{e}tale six to one cover using serial unprojection. In Section 2 we develop the necessary algebraic machiner
Externí odkaz:
http://arxiv.org/abs/0707.0244
Kniha
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Alexeev, Valery, Pardini, Rita
We describe explicitly the geometric compactifications, obtained by adding slc surfaces $X$ with ample canonical class, for two connected components in the moduli space of surfaces of general type: Campedelli surfaces with $\pi_1(X)=\mathbb Z_2^3$ an
Externí odkaz:
http://arxiv.org/abs/0901.4431