Zobrazeno 1 - 10
of 152
pro vyhledávání: '"CAISHENG CHEN"'
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-17 (2024)
Abstract In this work, we study the existence of infinitely many solutions to the following quasilinear Schrödinger equations with a parameter α and a concave-convex nonlinearity: 0.1 − Δ p u + V ( x ) | u | p − 2 u − Δ p ( | u | 2 α ) | u
Externí odkaz:
https://doaj.org/article/0c558e22a77743658a705cbb419ad40a
Autor:
Hui Wang, Caisheng Chen
Publikováno v:
Boundary Value Problems, Vol 2021, Iss 1, Pp 1-11 (2021)
Abstract In this paper, we are interested in L ∞ $L^{\infty }$ decay estimates of weak solutions for the doubly nonlinear parabolic equation and the degenerate evolution m-Laplacian equation not in the divergence form. By a modified Moser’s techn
Externí odkaz:
https://doaj.org/article/cf1fbc9dcfc1411198bd5b3d1208fceb
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2020, Iss 41, Pp 1-20 (2020)
In this paper, we study the following quasilinear Schrödinger equation of the form \begin{equation*} -\Delta_{p}u+V(x)|u|^{p-2}u-\left[\Delta_{p}(1+u^{2})^{\alpha/2}\right]\frac{\alpha u}{2(1+u^{2})^{(2-\alpha)/2}}=k(u),\qquad x\in \mathbb{R}^{N}, \
Externí odkaz:
https://doaj.org/article/4040a638b19b407bbfe54f335872eb03
Publikováno v:
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-13 (2020)
Abstract In this paper, we investigate the existence of solutions for the fractional p-Laplace equation ( − Δ ) p s u + V ( x ) | u | p − 2 u = h 1 ( x ) | u | q − 2 u + h 2 ( x ) | u | r − 2 u in R N , $$ (-\Delta)_{p}^{s}u+V(x) \vert u \ve
Externí odkaz:
https://doaj.org/article/c106e531056f47e69ca4be00d6191918
Publikováno v:
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-18 (2020)
Abstract The aim of this paper is to prove the Liouville-type theorem of the following weighted Kirchhoff equations: 0.1 − M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) e u , z = ( x , y ) ∈ R N = R N 1 × R N 2 $$
Externí odkaz:
https://doaj.org/article/b64f67d100e2407d83331918eea68275
Publikováno v:
Boundary Value Problems, Vol 2018, Iss 1, Pp 1-11 (2018)
Abstract In this paper, we study the nonexistence of stable solutions for the quasilinear Schrödinger equation 0.1 −Δu−[Δ(1+u2)1/2]u2(1+u2)1/2=h(x)|u|q−1u,x∈RN, $$ -\Delta u- \bigl[\Delta\bigl(1+u^{2}\bigr)^{1/2} \bigr]\frac{ u}{2(1+u^{2})
Externí odkaz:
https://doaj.org/article/1edcea18587e4cdbaa0fbaab0495a64a
Publikováno v:
Boundary Value Problems, Vol 2018, Iss 1, Pp 1-18 (2018)
Abstract In this paper, we investigate the fractional p-Kirchhoff -type system: {M(∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)(−Δ)psu=μg(x)|u|β−2u+aa+bh(x)|u|a−2u|v|b,in Ω,M(∫R2N|v(x)−v(y)|p|x−y|N+psdxdy)(−Δ)psv=σf(x)|v|β−2v+ba+bh(x)|
Externí odkaz:
https://doaj.org/article/36eba1a99100482c883f4181f837a7ed
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 81,, Pp 1-11 (2018)
We prove a Liouville-type theorem for stable solution of the singular quasilinear elliptic equations $$\displaylines{ -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u)=f(x)|u|^{q-1}u, \quad \text{in } \mathbb{R}^N, \cr -\text{div}(|x|^{-ap}|\nabla
Externí odkaz:
https://doaj.org/article/f7160ddf35be4424bca71e522534819d
Publikováno v:
Boundary Value Problems, Vol 2017, Iss 1, Pp 1-17 (2017)
Abstract In this paper we study the Schrödinger-Poisson system 0.1 { − Δ u + V ( x ) u + K ( x ) ϕ u = a ( x ) | u | m − 2 u + λ b ( x ) | u | q − 2 u , in R 3 − Δ ϕ = K ( x ) u 2 , lim | x | → ∞ ϕ ( x ) = 0 , in R 3 , $$ \textstyl
Externí odkaz:
https://doaj.org/article/e601f301eeeb4fab84dd8e8d7ebbe98e
Autor:
Caisheng Chen
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 88,, Pp 1-15 (2016)
Using variational methods we prove the existence of infinitely many solutions to the fractional Schrodinger equation $$ (-\Delta)^su+V(x)u=f(x,u), \quad x\in\mathbb{R}^N, $$ where $N\ge 2, s\in (0,1)$. $(-\Delta)^s$ stands for the fractional La
Externí odkaz:
https://doaj.org/article/5820220b6af44daabf0b87be970fde0b