Zobrazeno 1 - 10
of 47
pro vyhledávání: '"C. J. Schinas"'
Publikováno v:
Opuscula Mathematica, Vol 38, Iss 1, Pp 95-115 (2018)
In this paper we prove the stability of the zero equilibria of two systems of difference equations of exponential type, which are some extensions of an one-dimensional biological model. The stability of these systems is investigated in the special ca
Externí odkaz:
https://doaj.org/article/008878a4e34241ca867204c0dec19d4e
Autor:
G. Papaschinopoulos, C. J. Schinas
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 23, Iss 12, Pp 839-848 (2000)
We study the oscillatory behavior, the periodicity and the asymptotic behavior of the positive solutions of the system of two nonlinear difference equations xn+1=A+xn−1/yn and yn+1=A+yn−1/xn, where A is a positive constant, and n=0,1,….
Externí odkaz:
https://doaj.org/article/027db83817f74f76bcb015cf51eec797
Publikováno v:
Advances in Difference Equations, Vol 2010 (2010)
Externí odkaz:
https://doaj.org/article/fe6991d71d5e42519003bf0fb8574fc2
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2009 (2009)
We study the boundedness, the attractivity, and the stability of the positive solutions of the rational difference equation xn+1=(pnxn−2+xn−3)/(qn+xn−3), n=0,1,…, where pn,qn, n=0,1,… are positive sequences of period 2.
Externí odkaz:
https://doaj.org/article/15fa87e7626b4b428997b9cc3c2cfc78
Publikováno v:
Advances in Difference Equations, Vol 2009 (2009)
In this paper we study the boundedness, the persistence, the attractivity and the stability of the positive solutions of the nonlinear difference equation xn+1=α+(xn−1p/xnq), n=0,1,…, where α,p,q∈(0,∞) and x−1,x0∈(0,∞). Moreover we in
Externí odkaz:
https://doaj.org/article/534cf7657d8546e7a9790097088a708b
Publikováno v:
Advances in Difference Equations, Vol 2007 (2007)
We consider the following system of Lyness-type difference equations: x1(n+1)=(akxk(n)+bk)/xk−1(n−1), x2(n+1)=(a1x1(n)+b1)/xk(n−1), xi(n+1)=(ai−1xi−1(n)+bi−1)/xi−2(n
Externí odkaz:
https://doaj.org/article/01cf742ba2a849509dbc0d3cd6c48242
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2021, Iss 67, Pp 1-13 (2021)
Under the exponential trichotomy condition we study the Hyers–Ulam stability for the linear partial difference equation: \[ x_{n+1,m}=A_nx_{n,m}+B_{n,m}x_{n,m+1}+f(x_{n,m}),\qquad n,m\in \mathbb{Z} \] where $A_n$ is a $k\times k$ matrix whose eleme
Publikováno v:
Mathematical Methods in the Applied Sciences. 44:4316-4329
In this paper, we study the stability of the zero equilibrium and the occurrence of flip bifurcation on the following system of difference equations: \[x_{n+1} =a_1\frac{y_n}{b_1+y_n} +c_1\frac{x_ne^{k_1-d_1x_n}}{1+e^{k_1-d_1x_n}},\]\\ \[y_{n+1} =a_2
In this paper, we study the conditions under which the following symmetric system of difference equations with exponential terms: \[ x_{n+1} =a_1\frac{y_n}{b_1+y_n} +c_1\frac{x_ne^{k_1-d_1x_n}}{1+e^{k_1-d_1x_n}},\] \[ y_{n+1} =a_2\frac{x_n}{b_2+x_n}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::acef9d19a1e9cb5d2ee44e96f34cb3e9
https://doi.org/10.22541/au.161338138.88313798/v1
https://doi.org/10.22541/au.161338138.88313798/v1
Publikováno v:
Mathematical Methods in the Applied Sciences.