Zobrazeno 1 - 10
of 77
pro vyhledávání: '"C. Casanova-Mateo"'
Publikováno v:
Applied Sciences, Vol 13, Iss 14, p 8266 (2023)
For decades, humans have been confronted with numerous pest species, with the desert locust being one of the most damaging and having the greatest socio-economic impact. Trying to predict the occurrence of such pests is often complicated by the small
Externí odkaz:
https://doaj.org/article/02c7fd5df2fd41ad9ce95fe0be114777
Autor:
C. Castillo-Botón, D. Casillas-Pérez, C. Casanova-Mateo, L. M. Moreno-Saavedra, B. Morales-Díaz, J. Sanz-Justo, P. A. Gutiérrez, S. Salcedo-Sanz
Publikováno v:
Water, Vol 12, Iss 6, p 1528 (2020)
This paper presents long- and short-term analyses and predictions of dammed water level in a hydropower reservoir. The long-term analysis was carried out by using techniques such as detrended fluctuation analysis, auto-regressive models, and persiste
Externí odkaz:
https://doaj.org/article/4256f103efad44ed8a307e6066e4a7ab
Autor:
Pedro Antonio Gutiérrez, David Guijo-Rubio, Juan Carlos Fernández, Pablo Salvador-González, Antonio M. Gómez-Orellana, C. Casanova-Mateo, Sancho Salcedo-Sanz, César Hervás-Martínez
Publikováno v:
Neural Computing and Applications. 32:13917-13929
The prediction of convective clouds formation is a very important problem in different areas such as agriculture, natural hazards prevention or transport-related facilities. In this paper, we evaluate the capacity of different types of evolutionary a
Autor:
Julio Ramiro-Bargueno, C. Casanova-Mateo, Sancho Salcedo-Sanz, Mihaela I. Chidean, Antonio J. Caamaño
Publikováno v:
Theoretical and Applied Climatology. 140:927-949
The authors present a novel self-organized climate regionalization (CR) method that obtains a spatial clustering of regions, based on the explained variance of physical measurements in their coverage. This method enables a microscopic characterizatio
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Solar Energy. 183:768-775
In this paper we evaluate the performance of several Machine Learning regression techniques in a problem of global solar radiation estimation from geostationary satellite data. Different types of neural networks, Support Vector Regression and Gaussia
Autor:
C. Castillo-Botón, D. Casillas-Pérez, C. Casanova-Mateo, S. Ghimire, E. Cerro-Prada, P.A. Gutierrez, R.C. Deo, S. Salcedo-Sanz
Publikováno v:
Atmospheric Research. 272:106157
Autor:
J. Del Ser, D. Casillas-Perez, L. Cornejo-Bueno, L. Prieto-Godino, J. Sanz-Justo, C. Casanova-Mateo, S. Salcedo-Sanz
Randomization-based Machine Learning methods for prediction are currently a hot topic in Artificial Intelligence, due to their excellent performance in many prediction problems, with a bounded computation time. The application of randomization-based
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ff851d649e1429c8aa864502aed751b0
Autor:
C. Casanova-Mateo, Antonio J. Caamaño, David Casillas-Perez, Sancho Salcedo-Sanz, Mihaela I. Chidean, Laura Cornejo-Bueno, Julia Sanz-Justo, Sara Cornejo-Bueno
Publikováno v:
Symmetry, Vol 12, Iss 1045, p 1045 (2020)
Symmetry
Volume 12
Issue 6
Symmetry
Volume 12
Issue 6
This work presents an analysis of low-visibility event persistence and prediction at Villanubla Airport (Valladolid, Spain), considering Runway Visual Range (RVR) time series in winter. The analysis covers long- and short-term persistence and predict
Autor:
Pedro Antonio Gutiérrez, C. Castillo-Botón, L. M. Moreno-Saavedra, B. Morales-Díaz, Julia Sanz-Justo, David Casillas-Perez, Sancho Salcedo-Sanz, C. Casanova-Mateo
Publikováno v:
Water, Vol 12, Iss 1528, p 1528 (2020)
Water
Volume 12
Issue 6
Water
Volume 12
Issue 6
This paper presents long- and short-term analyses and predictions of dammed water level in a hydropower reservoir. The long-term analysis was carried out by using techniques such as detrended fluctuation analysis, auto-regressive models, and persiste