Zobrazeno 1 - 10
of 91
pro vyhledávání: '"C. Avramescu"'
Autor:
C. Avramescu, Cristian Vladimirescu
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2005, Iss 25, Pp 1-6 (2005)
In the present Note an existence result of asymptotically stable solutions for the integral equation $$x\left( t\right) =q\left( t\right) +\int_{0}^{t}K\left( t,s,x\left( s\right) \right) ds +\int_{0}^{\infty }G\left( t,s,x\left( s\right) \right) ds$
Externí odkaz:
https://doaj.org/article/c26f0a8e57514ab08de40744fa0d6e78
Autor:
C. Avramescu
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2004, Iss 17, Pp 1-10 (2004)
A generalization of the Leray-Schauder principle for multivalued mappings is given. Using this result, an existence theorem for an integral inclusion is obtained.
Externí odkaz:
https://doaj.org/article/8ac6f59f3e0b416987e1b2961ad5c71b
Fixed points for some non-obviously contractive operators defined in a space of continuous functions
Autor:
C. Avramescu, Cristian Vladimirescu
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2004, Iss 3, Pp 1-7 (2004)
Let $X$ be an arbitrary (real or complex) Banach space, endowed with the norm $\left| \cdot \right| .$ Consider the space of the continuous functions $C\left( \left[ 0,T\right] ,X\right) $ $\left( T>0\right) $, endowed with the usual topology, and le
Externí odkaz:
https://doaj.org/article/e702a6fc694f4c338988bdc1134bfb59
Autor:
C. Avramescu
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2003, Iss 13, Pp 1-9 (2003)
Let $f:\mathbb{R}\times \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ be a continuous function and let $h:\mathbb{R}\rightarrow \mathbb{R}$ be a continuous and strictly positive function. A sufficient condition such that the equation $\dot{x}=f\left( t,x
Externí odkaz:
https://doaj.org/article/1c8e18ef0f084f4b828377fa0aa3fd9f
Autor:
C. Avramescu
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2003, Iss 5, Pp 1-15 (2003)
Using a particular locally convex space and Schaefer's theorem, a generalization of Krasnoselskii's fixed point Theorem is proved. This result is further applied to certain nonlinear integral equation proving the existence of a solution on $\mathbb{R
Externí odkaz:
https://doaj.org/article/9e639934b1cf40a4901edfc29fea7330
Autor:
C. Avramescu, Cristian Vladimirescu
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2002, Iss 3, Pp 1-11 (2002)
Using interesting techniques, an existence result for the problem $\ddot{x}+2f\left( t\right) \dot{x}+x+g\left( t,x\right) =0,$ $\lim\limits_{t\rightarrow +\infty }x\left( t\right) =\lim\limits_{t\rightarrow +\infty }\dot{x}\left( t\right) =0,$ is gi
Externí odkaz:
https://doaj.org/article/1e920d2ed2444749a1f0bd42fc9595d5
Autor:
C. Avramescu
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2002, Iss 9, Pp 1-12 (2002)
The problem of existence of the solutions for ordinary differential equations vanishing at $\pm \infty $ is considered.
Externí odkaz:
https://doaj.org/article/733cb705e01243a38d1173a2089fc6d1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Hypertension. 35:e196