Zobrazeno 1 - 10
of 887
pro vyhledávání: '"C. Antonopoulou"'
Autor:
Dimitra C Antonopoulou
Publikováno v:
Nonlinearity. 36:1053-1081
We consider in dimensions d = 1 , 2 , 3 the ɛ-dependent stochastic Cahn–Hilliard equation with a multiplicative and sufficiently regular in space infinite dimensional Fourier noise with strength of order , γ > 0. The initial condition is non-laye
Autor:
S. Sotiropoulos, C. Chatzissavvidis, I. Papadakis, V. Kavvadias, C. Paschalidis, C. Antonopoulou
Publikováno v:
Acta Horticulturae. :237-246
Publikováno v:
Calculus of Variations and Partial Differential Equations. 60
We study the dynamics of the one-dimensional $$\varepsilon $$ -dependent Cahn–Hilliard/Allen–Cahn equation within a neighborhood of an equilibrium of N transition layers, that in general does not conserve mass. Two different settings are consider
Autor:
D. C. Antonopoulou
Publikováno v:
IMA Journal of Numerical Analysis. 40:2076-2105
We consider the $\varepsilon $-dependent stochastic Allen–Cahn equation with mild space–time noise posed on a bounded domain of $\mathbb{R}^2$. The positive parameter $\varepsilon $ is a measure for the inner layers width that are generated durin
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis. 53:523-549
This paper presents an a posteriori error analysis for the discontinuous in time space–time scheme proposed by Jamet for the heat equation in multi-dimensional, non-cylindrical domains Jamet (SIAM J. Numer. Anal. 15 (1978) 913–928). Using a Clém
The financial model proposed involves the liquidation process of a portfolio through sell / buy orders placed at a price \begin{document}$ x\in\mathbb{R}^n $\end{document}, with volatility. Its rigorous mathematical formulation results to an \begin{d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e250f2c9e9278b52cd18e827343ee53
http://arxiv.org/abs/2012.13432
http://arxiv.org/abs/2012.13432
Publikováno v:
Journal of Differential Equations. 265:3168-3211
The stochastic partial differential equation analyzed in this work, is motivated by a simplified mesoscopic physical model for phase separation. It describes pattern formation due to adsorption and desorption mechanisms involved in surface processes,
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Recent articles report elevated markers of coagulation, endothelial injury, and microthromboses in lungs from deceased COVID-19 patients. However, there has been no discussion of what may induce intravascular coagulation. Platelets are critical in th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2127::4879e23f01e8048920945041e4bea25e
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3077617
https://pergamos.lib.uoa.gr/uoa/dl/object/uoadl:3077617
We consider the stochastic Cahn–Hilliard equation with additive noise term $$\varepsilon ^\gamma g\, {\dot{W}}$$ ε γ g W ˙ ($$\gamma >0$$ γ > 0 ) that scales with the interfacial width parameter $$\varepsilon $$ ε . We verify strong error esti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2a914a1783979d97979dc4c37e1dd53e
http://hdl.handle.net/10044/1/72164
http://hdl.handle.net/10044/1/72164