Zobrazeno 1 - 10
of 243
pro vyhledávání: '"C Foias"'
This book aims to bridge the gap between practising mathematicians and the practitioners of turbulence theory. It presents the mathematical theory of turbulence to engineers and physicists, and the physical theory of turbulence to mathematicians. The
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Uspekhi Matematicheskikh Nauk. 69:177-200
Publikováno v:
Indagationes Mathematicae. 25:1-23
In this paper we discuss a new metric property that some operator algebras on Hilbert space possess and some resulting consequences concerning transitivity and structure theory of such algebras.
Publikováno v:
Canadian Journal of Mathematics. 60:758-789
This paper is a continuation of three recent articles concerning the structure of hyperinvariant subspace lattices of operators on a (separable, infinite dimensional) Hilbert space . We show herein, in particular, that there exists a “universal”
Publikováno v:
Communications in Mathematical Physics. 255:329-361
Publikováno v:
Discrete and Continuous Dynamical Systems. 10:253-268
Part of the Kolmogorov-Kraichnan-Batchelor theory of turbulence concerns the average enstrophy flux across wave numbers. To support that theory, rigorous relations involving both the net and one-way flux are established using ensemble averages in [9]
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 7:403-429
Three approaches for the rigorous study of the 2D Navier-Stokes equations (NSE) are applied to the Lorenz system. Analysis of time averaged solutions leads to a description of invariant probability measures on the Lorenz attractor which is much more
Publikováno v:
Physica D: Nonlinear Phenomena. 133:49-65
In this paper we will survey our results on the Camassa–Holm equations and their relation to turbulence as discussed in S. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi, S. Wynne, The Camassa–Holm equations as a closure model for turbulent chann