Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Cécile Mailler"'
Autor:
Cécile Mailler, Jean-François Marckert
Publikováno v:
Mailler, C & Marckert, J F 2022, ' Parameterised branching processes : A functional version of Kesten & Stigum theorem ', Stochastic Processes and their Applications, vol. 152, pp. 339-377 . https://doi.org/10.1016/j.spa.2022.06.010
Let (Zn,n≥0) be a supercritical Galton–Watson process whose offspring distribution μ has mean λ>1 and is such that ∫xlog+(x)dμ(x)n/λn) converges almost surely, as n→+∞. The limiting random variable has mean 1, and its distribution is ch
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::af6329870c00257d249f27f45b4e25c2
https://purehost.bath.ac.uk/ws/files/242855199/2002.04954.pdf
https://purehost.bath.ac.uk/ws/files/242855199/2002.04954.pdf
Autor:
Cécile Mailler, Denis Villemonais
Publikováno v:
Annals of Applied Probability
Annals of Applied Probability, 2020, 30 (5), ⟨10.1214/20-AAP1561⟩
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2020, 30 (5), ⟨10.1214/20-AAP1561⟩
Mailler, C & Villemonais, D 2020, ' Stochastic approximation on non-compact measure spaces and application to measure-valued Pólya processes ', Annals of Applied Probability, vol. 30, no. 5, pp. 2393-2438 . https://doi.org/10.1214/20-AAP1561
Ann. Appl. Probab. 30, no. 5 (2020), 2393-2438
Annals of Applied Probability, 2020, 30 (5), ⟨10.1214/20-AAP1561⟩
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2020, 30 (5), ⟨10.1214/20-AAP1561⟩
Mailler, C & Villemonais, D 2020, ' Stochastic approximation on non-compact measure spaces and application to measure-valued Pólya processes ', Annals of Applied Probability, vol. 30, no. 5, pp. 2393-2438 . https://doi.org/10.1214/20-AAP1561
Ann. Appl. Probab. 30, no. 5 (2020), 2393-2438
International audience; Our main result is to prove almost-sure convergence of a stochastic-approximation algorithm defined on the space of measures on a non-compact space. Our motivation is to apply this result to measure-valued P\'olya processes (M
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cc870851bdcae0bf33c3a4c31e1851bd
https://hal.science/hal-01895621
https://hal.science/hal-01895621
Publikováno v:
Lasmar, N, Mailler, C & Selmi, O 2018, ' Multiple drawing multi-colour urns by stochastic approximation ', Journal of Applied Probability, vol. 55, no. 1, pp. 254-281 . https://doi.org/10.1017/jpr.2018.16
A classical P��lya urn scheme is a Markov process whose evolution is encoded by a replacement matrix $(R_{i,j})_{1\leq i,j\leq d}$. At every discrete time-step, we draw a ball uniformly at random, denote its colour $c$, and replace it in the urn
Publikováno v:
Björnberg, J, Mailler, C, Mörters, P & Ueltschi, D 2020, ' Characterising random partitions by random colouring ', Electronic Communications in Probability, vol. 25, 4 . https://doi.org/10.1214/19-ECP283
Electron. Commun. Probab.
Electron. Commun. Probab.
Let $(X_1,X_2,...)$ be a random partition of the unit interval $[0,1]$, i.e. $X_i\geq0$ and $\sum_{i\geq1} X_i=1$, and let $(\varepsilon_1,\varepsilon_2,...)$ be i.i.d. Bernoulli random variables of parameter $p \in (0,1)$. The Bernoulli convolution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f624f325e80e8b7abdff80056f0ecab
https://purehost.bath.ac.uk/ws/files/202821843/random_partitions_v10.pdf
https://purehost.bath.ac.uk/ws/files/202821843/random_partitions_v10.pdf
Publikováno v:
Smith, C, Mailler, C & Yates, K 2019, ' Unbiased on lattice domain growth ', Physical Review E, vol. 100, no. 6, 063307 . https://doi.org/10.1103/PhysRevE.100.063307
Domain growth is a key process in many areas of biology, including embryonic development, the growth of tissue, and limb regeneration. As a result, mechanisms for incorporating it into traditional models for cell movement, interaction, and proliferat
Random walks with preferential relocations and fading memory: a study through random recursive trees
Autor:
Gerónimo Uribe Bravo, Cécile Mailler
Publikováno v:
Mailler, C & Uribe Bravo, G 2019, ' Random walks with preferential relocations and fading memory: a study through random recursive trees. ', Journal of Statistical Mechanics-Theory and Experiment, vol. 2019, no. 9, 093206, pp. 1-50 . https://doi.org/10.1088/1742-5468/ab081f
Consider a stochastic process that behaves as a $d$-dimensional simple and symmetric random walk, except that, with a certain fixed probability, at each step, it chooses instead to jump to a given site with probability proportional to the time it has
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::95882de40e18a0dfa10a81c4c531c979
https://purehost.bath.ac.uk/ws/files/189734255/memory.pdf
https://purehost.bath.ac.uk/ws/files/189734255/memory.pdf
Publikováno v:
Mailler, C, Mörters, P & Senkevich, A 2021, ' Competing growth processes with random growth rates and random birth times ', Stochastic Processes and their Applications, vol. 135, pp. 183-226 . https://doi.org/10.1016/j.spa.2021.02.003
Finding the most powerful node in a dynamic random network, the largest set in a partition-valued stochastic process, or the largest family in an evolving population at a given time, can be a very difficult problem. This is particularly the case when
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30883da2ca5933585c621328cb4b7be6
http://arxiv.org/abs/1909.07690
http://arxiv.org/abs/1909.07690
Autor:
Cécile Mailler, Antoine Genitrini
Publikováno v:
Algorithmica
Algorithmica, 2016, 1, pp.1-33. ⟨10.1007/s00453-016-0113-3⟩
Algorithmica, Springer Verlag, 2016, 1, pp.1-33. ⟨10.1007/s00453-016-0113-3⟩
Algorithmica, 2016, 1, pp.1-33. ⟨10.1007/s00453-016-0113-3⟩
Algorithmica, Springer Verlag, 2016, 1, pp.1-33. ⟨10.1007/s00453-016-0113-3⟩
This article is motivated by the following satisfiability question: pick uniformly at random an and/or Boolean expression of length n, built on a set of k_n Boolean variables. What is the probability that this expression is satisfiable? asymptoticall
Publikováno v:
Journal of Theoretical Probability. 28:923-957
Consider a balanced nontriangular two-color Polya–Eggenberger urn process, assumed to be large, which means that the ratio $$\sigma $$ of the replacement matrix eigenvalues satisfies $$1/2
Autor:
Cécile Mailler, Jean-François Marckert
Publikováno v:
Electronic Journal of Probability
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22, ⟨10.1214/17-EJP47⟩
Electron. J. Probab.
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2017, 22, ⟨10.1214/17-EJP47⟩
Electron. J. Probab.
A Pólya urn process is a Markov chain that models the evolution of an urn containing some coloured balls, the set of possible colours being $\{1,\ldots ,d\}$ for $d\in \mathbb{N} $. At each time step, a random ball is chosen uniformly in the urn. It
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0cbda53be1bd197d42127dd2bbca37f8
https://hal.archives-ouvertes.fr/hal-01631364
https://hal.archives-ouvertes.fr/hal-01631364