Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Cátia Regina de Oliveira Quilles Queiroz"'
Publikováno v:
REMAT, Vol 10, Iss 1 (2024)
Este artigo tem por objetivo compreender a influência e os desdobramentos da monitoria acadêmica na relação entre graduandos e a Matemática em uma universidade federal. A metodologia utilizada foi o estudo de caso, com abordagem de pesquisa mist
Externí odkaz:
https://doaj.org/article/ab2f8bfb4a1842b7b88cb7793b09679c
Publikováno v:
IEEE Access, Vol 8, Pp 196050-196061 (2020)
This paper aims to construct signal sets from quotient rings of the quaternion over a real number field associated with the arithmetic Fuchsian group $\Gamma _{4g}$ , where $g$ is the genus of the associated surface. These Fuchsian groups consist of
Autor:
Clarice Dias de Albuquerque, Vandenberg Lopes Vieira, Cátia Regina de Oliveira Quilles Queiroz, Giuliano Gadioli La Guardia, Anderson José de Oliveira, Leandro Bezerra de Lima
Publikováno v:
Physica A: Statistical Mechanics and its Applications. 599:127433
Autor:
Clarice Dias de Albuquerque, Giuliano Gadioli La Guardia, Reginaldo Palazzo, Cátia Regina de Oliveira Quilles Queiroz, Vandenberg Lopes Vieira
In the last three decades, several constructions of quantum error-correcting codes were presented in the literature. Among these codes, there are the asymmetric ones, i.e., quantum codes whose $Z$-distance $d_z$ is different from its $X$-distance $d_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b42f0c4103dca28644de1ef9e58261bc
Autor:
Cátia Regina de Oliveira Quilles Queiroz, Cristobal Camarero, Carmen Martínez, Reginaldo Palazzo
Publikováno v:
IEEE Transactions on Information Theory. 59:5905-5916
The problem of searching for perfect codes has attracted great attention since the paper by Golomb and Welch, in which the existence of these codes over Lee metric spaces was considered. Since perfect codes are not very common, the problem of searchi
Autor:
José Carmelo Interlando, Cintya Wink de Oliveira Benedito, Reginaldo Palazzo, Cátia Regina de Oliveira Quilles Queiroz
Publikováno v:
Coding Theory and Applications ISBN: 9783319172958
ICMCTA
ICMCTA
Hyperbolic lattices \(\mathcal{O}\) are the basic entities used in the design of signal constellations in the hyperbolic plane. Once the identification of the arithmetic Fuchsian group in a quaternion order is made, the next step is to present the co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1b38d6de320b78520fb1bce421164379
https://doi.org/10.1007/978-3-319-17296-5_34
https://doi.org/10.1007/978-3-319-17296-5_34
Autor:
Cintya Wink O. Benedito, J. Carmelo Interlando, Cátia Regina de Oliveira Quilles Queiroz, Reginaldo Palazzo
Publikováno v:
Journal of Algebra and Its Applications. 15:1650157
Regular tessellations of the hyperbolic plane play an important role in the design of signal constellations for digital communication systems. Self-dual tessellations of type [Formula: see text] with [Formula: see text], and [Formula: see text] have
Publikováno v:
ISRN Algebra.
We propose the construction of signal space codes over the quaternion orders from a graph associated with the arithmetic Fuchsian group Γ8. This Fuchsian group consists of the edge-pairing isometries of the regular hyperbolic polygon (fundamental re
Publikováno v:
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
Orientador: Reginaldo Palazzo Junior Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação Resumo: Neste trabalho apresentamos a construção de códigos geometricamente uniformes derivados de grafo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::77bcfbc14253965dbc9f7eecaa7c2761
Publikováno v:
IEEE Access, Vol 8, Pp 196050-196061 (2020)
This paper aims to construct signal sets from quotient rings of the quaternion over a real number field associated with the arithmetic Fuchsian group Γ4g, where g is the genus of the associated surface. These Fuchsian groups consist of the edge-pair
Externí odkaz:
https://doaj.org/article/ed90ce2605dc4b5c914e237cdbc98abc