Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Buttsworth, Timothy"'
Let $M$ be a smooth, compact manifold and let $\mathcal{N}_{\mu}$ denote the set of Riemannian metrics on $M$ with smooth volume density $\mu$. For a given $g_0\in \mathcal{N}_{\mu}$, we show that if $\dim(M)\ge 5$, then there exists an open and dens
Externí odkaz:
http://arxiv.org/abs/2307.15788
Autor:
Buttsworth, Timothy, Pulemotov, Artem
We prove local solvability of the Poisson equation with a positive or negative right-hand side for closed $G_2$-structures.
Comment: 10 pages, no figures
Comment: 10 pages, no figures
Externí odkaz:
http://arxiv.org/abs/2305.17257
For each $n\ge 3$, we construct a 'pancake-like', $O(2)\times O(n-1)$-invariant ancient Ricci flow with positive curvature operator and bounded "girth", and we determine its asymptotic limits backwards in time. This solution is new even in dimension
Externí odkaz:
http://arxiv.org/abs/2302.04964
We construct a rotationally invariant Ricci flow through surgery starting at any closed rotationally invariant Riemannian manifold. We demonstrate that a sequence of such Ricci flows with surgery converges to a Ricci flow spacetime in the sense of [3
Externí odkaz:
http://arxiv.org/abs/2201.09387
Autor:
Buttsworth, Timothy
Using center manifolds and topological degree theory, we construct a new family of complete, $SU(2)$-invariant and steady gradient Ricci solitons on the four-dimensional non-compact cohomogeneity one manifold with group diagram $\mathbb{Z}_4\subset U
Externí odkaz:
http://arxiv.org/abs/2111.12807
Autor:
Buttsworth, Timothy, Pulemotov, Artem
Publikováno v:
Journal of Functional Analysis 285 (2023), article 110019
The paper studies the problem of prescribing positive cross curvature on the three-dimensional sphere. We produce several existence results and an example of non-uniqueness, disproving a conjecture of Hamilton's.
Comment: 39 pages, 1 figure
Comment: 39 pages, 1 figure
Externí odkaz:
http://arxiv.org/abs/2107.13246
Autor:
Buttsworth, Timothy
Consider the standard action of $SO(2)\times SO(3)$ on $\mathbb{R}^5=\mathbb{R}^2\oplus \mathbb{R}^3$. We establish the existence of a uniform constant $\mathcal{C}>0$ so that any $SO(2)\times SO(3)$-invariant Ricci soliton on $\mathbb{S}^4\subset \m
Externí odkaz:
http://arxiv.org/abs/2104.12996
We prove an existence result for the prescribed Ricci curvature equation for certain doubly warped product metrics on $\mathbb{S}^{d_1+1}\times \mathbb{S}^{d_2}$, where $d_i \geq 2$. If $T$ is a metric satisfying certain curvature assumptions, we sho
Externí odkaz:
http://arxiv.org/abs/2010.05118
Autor:
Buttsworth, David, Buttsworth, Timothy
Surface heat transfer in convective and radiative environments is sometimes measured by recording the surface temperature history in a transient experiment and interpreting this surface temperature with the aid of a suitable model for transient condu
Externí odkaz:
http://arxiv.org/abs/2004.14558
Autor:
Buttsworth, Timothy, Pulemotov, Artem
Publikováno v:
In Journal of Functional Analysis 1 September 2023 285(5)