Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Button, Jack"'
Autor:
Button, Jack, Kropholler, Robert
We show that the free-by-cyclic groups of the form F(2)-by-Z act properly cocompactly on CAT(0) square complexes. We also show using generalised Baumslag-Solitar groups that all known groups defined by a 2-generator 1-relator presentation are either
Externí odkaz:
http://arxiv.org/abs/1503.01989
Publikováno v:
Bulletin of the Australian Mathematical Society 93 (2015) 47-60
We explore transversals of finite index subgroups of finitely generated groups. We show that when $H$ is a subgroup of a rank $n$ group $G$ and $H$ has index at least $n$ in $G$ then we can construct a left transversal for $H$ which contains a genera
Externí odkaz:
http://arxiv.org/abs/1402.0799
Autor:
Button, Jack, Roney-Dougal, Colva
Helfgott proved that there exists a $\delta>0$ such that if $S$ is a symmetric generating subset of $SL(2,p)$ containing 1 then either $S^3=SL(2,p)$ or $|S^3|\geq |S|^{1+\delta}$. It is known that $\delta\geq 1/3024$. Here we show that $\delta\leq(\l
Externí odkaz:
http://arxiv.org/abs/1401.2863
Publikováno v:
Amer. Math. Monthly 121 (2014), no. 10, 922-926
Let H, K be subgroups of G. We investigate the intersection properties of left and right cosets of these subgroups.
Comment: 4 pages
Comment: 4 pages
Externí odkaz:
http://arxiv.org/abs/1304.6111
Autor:
Button, Jack Oliver
In this thesis we look at two generator groups of Möbius transformations where the commutator of the generators is parabolic. In particular we are interested in quasi- Fuchsian groups T whose quotient surface fl/T consists of two once-punctured tor
Externí odkaz:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281796
Autor:
Button, Jack
We consider largeness of groups given by a presentation of deficiency 1, where the group is respectively free-by-cyclic, LERF or 1-relator. We give the first examples of (finitely generated free)-by-(infinite cyclic) word hyperbolic groups which are
Externí odkaz:
http://arxiv.org/abs/0803.3805
Autor:
Button, Jack
Publikováno v:
Geom. Topol. Monogr. 1 (1998), 117-125
Not all Schottky groups of Moebius transformations are classical Schottky groups. In this paper we show that all Fuchsian Schottky groups are classical Schottky groups, but not necessarily on the same set of generators.
Comment: 9 pages. Publish
Comment: 9 pages. Publish
Externí odkaz:
http://arxiv.org/abs/math/9810189
Autor:
Button, Jack, Roney-Dougal, Colva M.
Publikováno v:
In Journal of Algebra 1 January 2015 421:493-511
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Bull. Austral. Math. Soc.