Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Butterfly theorem"'
Autor:
Giang, Nguyen Ngoc, Phuoc, Nguyen Duy
Publikováno v:
Математика плюс / Mathematics Plus. 30(3):58-61
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=1068112
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Češek, Ema
Magistrsko delo obravnava izrek o metulju, ki je izrek evklidske geometrije, in številne njegove posplošitve. Poleg dokazov izreka z osnovnimi pojmi evklidske geometrije delo vključuje dokaz izreka v razširjeni evklidski ravnini. Za slednjega so
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3505::2dfaebd3cd8dc98ede43dc35f8abbd52
https://repozitorij.uni-lj.si/IzpisGradiva.php?id=132731
https://repozitorij.uni-lj.si/IzpisGradiva.php?id=132731
Autor:
Cesare Donolato
Publikováno v:
International Journal of Mathematical Education in Science and Technology. 48:1281-1284
The butterfly theorem is proved by assigning point masses to the four vertices of the wings and using the distributive property of the mass centre of a mechanical system.
Autor:
Rudolf Fritsch
Publikováno v:
Journal of Geometry. 107:305-316
We present a generalization of the notion of the orthocenter of a triangle and of Pappus’ theorem. Both subjects were discussed with Pickert in the last year of his life. Furthermore we add a projective Butterfly theorem which covers all known affi
Autor:
Greg Markowsky
Publikováno v:
Mathematics Magazine. 84:56-62
SummaryPascal's Hexagon Theorem is used to prove the Butterfly Theorem for conics, a well known result in Euclidean geometry. In the course of the proof, some basic concepts in projective geometry are introduced.
Autor:
J. Beban-Brkić
Publikováno v:
Mathematical Communications
Volume 11
Issue 1
Volume 11
Issue 1
The Butterfly theorem deals with a specific point related to a quadrangle inscribed into a circle. Many solutions to the well-known theorem have been given and various generalisations have lately been discussed. I was first puzzled with the adaptatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::e2f8e4b0d472b06ec46813d2696842d3
https://www.bib.irb.hr/150606
https://www.bib.irb.hr/150606
Autor:
Beban-Brkić, Jelena
A real affine plane A_2 is called an isotropic plane I_2, if in A_2 a metric is induced by an absolute {;f, F};, consisting of the line at infinity f of A_2 and a point F on f. The Butterfly theorem deals with a specific point related to a quadrangle
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=57a035e5b1ae::60da32be42ed01b81c392573f0d784ba
https://www.bib.irb.hr/150071
https://www.bib.irb.hr/150071
Autor:
William P. Wardlaw
Publikováno v:
Mathematics Magazine. 78:316-318
1 Hence a butterfly inscribed in a quadrilateral satisfies the same relation (1) as a butterfly inscribed in a circle. Equivalently, the conclusion of the theorem indicates that the ratio of the ratios, (AM/IM)/(CN/IN), is the same as the ratio IA/IC
Autor:
Sidney H. Kung
Publikováno v:
Mathematics Magazine. 78:314-316
1. Grant Cairns, Margaret McIntyre, and John Strantzen, Geometric proofs of some recent results of Yang Lu, this MAGAZINE 66:4 (October 1993), 263-265. 2. N. A. Court, Modern Pure Solid Geometry, Chelsea Publishing Co., New York, 1964. 3. H. L. Davie