Zobrazeno 1 - 10
of 155
pro vyhledávání: '"Business process intelligence"'
Autor:
Julian Theis, Houshang Darabi
Publikováno v:
IEEE Access, Vol 7, Pp 119787-119803 (2019)
In complex processes, various events can happen in different sequences. The prediction of the next event given an a-priori process state is of importance in such processes. Recent methods have proposed deep learning techniques such as recurrent neura
Externí odkaz:
https://doaj.org/article/8b14ce2b42be44bbb02ec7161c2b5b26
Nowadays, business processes are increasingly supported by IT services that produce massive amounts of event data during the execution of a process. These event data can be used to analyze the process using process mining techniques to discover the r
Autor:
Arta Moro Sundjaja
Publikováno v:
ComTech, Vol 7, Iss 2, Pp 113-120 (2016)
Higher demand from the top management in measuring business process performance causes the incremental implementation of BPM and BI in the enterprise. The problem faced by top managements is how to integrate their data from all system used to support
Externí odkaz:
https://doaj.org/article/4a04617746594d39b20fe3fcf61e6c11
Publikováno v:
Business Process Management Journal, 2014, Vol. 20, Issue 4, pp. 615-633.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/BPMJ-07-2013-0092
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Information systems (Oxf.) 81 (2019): 236–266. doi:10.1016/j.is.2018.02.001
info:cnr-pdr/source/autori:Cuzzocrea A.; Folino F.; Guarascio M.; Pontieri L./titolo:Predictive monitoring of temporally-aggregated performance indicators of business processes against low-level streaming events/doi:10.1016%2Fj.is.2018.02.001/rivista:Information systems (Oxf.)/anno:2019/pagina_da:236/pagina_a:266/intervallo_pagine:236–266/volume:81
info:cnr-pdr/source/autori:Cuzzocrea A.; Folino F.; Guarascio M.; Pontieri L./titolo:Predictive monitoring of temporally-aggregated performance indicators of business processes against low-level streaming events/doi:10.1016%2Fj.is.2018.02.001/rivista:Information systems (Oxf.)/anno:2019/pagina_da:236/pagina_a:266/intervallo_pagine:236–266/volume:81
Monitoring the performances of a business process is a key issue in many organizations, especially when the process must comply with predefined performance constraints. In such a case, empowering the monitoring system with prediction capabilities wou
Publikováno v:
Journal of Intelligent Information Systems, 52(1), 107-139. Springer
Journal of intelligent information systems : JIIS 52(1), 107-139 (2019). doi:10.1007/s10844-018-0507-6
Journal of intelligent information systems : JIIS 52(1), 107-139 (2019). doi:10.1007/s10844-018-0507-6
Journal of intelligent information systems : JIIS 52(1), 107-139 (2019). doi:10.1007/s10844-018-0507-6
Published by Springer Science + Business Media B.V, Dordrecht
Published by Springer Science + Business Media B.V, Dordrecht
Autor:
Houshang Darabi, Julian Theis
Publikováno v:
IEEE Access, Vol 7, Pp 119787-119803 (2019)
In complex processes, various events can happen in different sequences. The prediction of the next event given an a-priori process state is of importance in such processes. Recent methods have proposed deep learning techniques such as recurrent neura
Autor:
Bernardo Nicoletti
Publikováno v:
Palgrave Studies in Financial Services Technology ISBN: 9783030758707
Banking 5.0 is not only a technological platform transformation. It is a business model transformation. The business model canvas has several components. All of them are essential to go through a banking 5.0 transformation. Among all the components,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3f44b76fd585eb4fa5ace47719748309
https://doi.org/10.1007/978-3-030-75871-4_9
https://doi.org/10.1007/978-3-030-75871-4_9
Publikováno v:
Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPC.
Este proyecto tiene como objetivo analizar la complejidad de los procesos de negocio en las empresas retail de una forma profunda que en otras técnicas resulta muy difícil o incluso imposible de realizar. Con Process Mining es posible superar esta
Externí odkaz:
http://hdl.handle.net/10757/653470