Zobrazeno 1 - 10
of 251
pro vyhledávání: '"Bushnell, P. J."'
Autor:
Bushnell, Colin J., Henniart, Guy
Publikováno v:
Tunisian J. Math. 2 (2020) 337-357
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$. Let $\sigma$ be an irreducible smooth representation of the absolute Weil group $\Cal W_F$ of $F$ and $\sw(\sigma)$ the Swan exponent of $\sigma$. Assume $\sw(\sigma)
Externí odkaz:
http://arxiv.org/abs/1809.05666
Autor:
Bushnell, Colin J., Henniart, Guy
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with $p\neq 2$. Let $n$ be a power of $p$ and let $G$ be an inner form of the general linear group $\text{\rm GL}_n(F)$. We give a transparent parametrization of the ir
Externí odkaz:
http://arxiv.org/abs/1709.09609
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bushnell, Colin J., Henniart, Guy
Publikováno v:
Compositio Math. 155 (2019) 1959-2038
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with Weil group $\Cal W_F$. Let $\sigma$ be an irreducible smooth complex representation of $\Cal W_F$, realized as the Langlands parameter of an irreducible cuspidal r
Externí odkaz:
http://arxiv.org/abs/1611.09258
Autor:
Bushnell, Colin J, Henniart, Guy
Publikováno v:
Bull. Iranian Math. Soc. 43 n.4 (2017) 143--167
Let $F$ be a non-Archimedean locally compact field. Let $\sigma$ and $\tau$ be finite-dimensional semisimple representations of the Weil-Deligne group of $F$. We give strong upper and lower bounds for the Artin and Swan exponents of $\sigma\otimes\ta
Externí odkaz:
http://arxiv.org/abs/1603.01152
Autor:
Bushnell, Colin J., Henniart, Guy
Publikováno v:
Annals of Math 185 no. 3 (2017), 919-955
Let $F$ be a non-Archimedean locally compact field. We show that the local Langlands correspondence over $F$ has a strong property generalizing the higher ramification theorem of local class field theory. If $\pi$ is an irreducible cuspidal represent
Externí odkaz:
http://arxiv.org/abs/1510.01528
Autor:
Bushnell, Colin J., Henniart, Guy
Let $F$ be a non-Archimedean local field. An irreducible cuspidal representation of $\text{\rm GL}_n(F)$ is epipelagic if its Swan conductor equals 1. We give a full and explicit description of the Langlands parameters of such representations.
C
C
Externí odkaz:
http://arxiv.org/abs/1302.4304
Autor:
Bushnell, Colin J., Henniart, Guy
Let $F$ be a non-Archimedean local field of residual characteristic $p$, and $\ell$ a prime number, $\ell \neq p$. We consider the Langlands correspondence, between irreducible, $n$-dimensional, smooth representations of the Weil group of $F$ and irr
Externí odkaz:
http://arxiv.org/abs/1107.2266
Autor:
Bushnell, Colin J., Henniart, Guy
Let $F$ be a non-Archimedean local field and let $G$ be the general linear group $G = \text{\rm GL}_n(F)$. Let $\theta_1$, $\theta_2$ be simple characters in $G$. We show that $\theta_1$ intertwines with $\theta_2$ if and only if $\theta_1$ is endo-e
Externí odkaz:
http://arxiv.org/abs/1107.1981
Autor:
Bushnell, Colin J., Henniart, Guy
Let $F$ be a non-Archimedean local field. Let $\Cal W_F$ be the Weil group of $F$ and $\Cal P_F$ the wild inertia subgroup of $\scr W_F$. Let $\hat{\Cal W}_F$ be the set of equivalence classes of irreducible smooth representations of $\Cal W_F$. Let
Externí odkaz:
http://arxiv.org/abs/1103.5316