Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Buring, Ricardo"'
Autor:
Buring, Ricardo, Kiselev, Arthemy V.
Publikováno v:
Journal of Physics: Conference Series, Vol.2667 (2023), Paper 012080, pp.1--8
The formula $\star$ mod $\bar{o}(\hbar^k)$ of Kontsevich's star-product with harmonic propagators was known in full at $\hbar^{k\leqslant 6}$ since 2018 for generic Poisson brackets, and since 2022 also at $k=7$ for affine brackets. We discover that
Externí odkaz:
http://arxiv.org/abs/2309.16664
Autor:
Buring, Ricardo, Kiselev, Arthemy V.
Publikováno v:
SciPost Phys. Proc., Vol. 14 (2023), Paper 020, pp.1--11
In Kontsevich's graph calculus, internal vertices of directed graphs are inhabited by multi-vectors, e.g., Poisson bi-vectors; the Nambu-determinant Poisson brackets are differential-polynomial in the Casimir(s) and density $\varrho$ times Levi-Civit
Externí odkaz:
http://arxiv.org/abs/2212.08063
Autor:
Buring, Ricardo, Kiselev, Arthemy V.
Publikováno v:
Open Communications in Nonlinear Mathematical Physics, Proceedings: OCNMP Conference, Bad Ems (Germany), 23-29 June 2024 (October 3, 2024) ocnmp:14168
The Kontsevich star-product admits a well-defined restriction to the class of affine -- in particular, linear -- Poisson brackets; its graph expansion consists only of Kontsevich's graphs with in-degree $\leqslant 1$ for aerial vertices. We obtain th
Externí odkaz:
http://arxiv.org/abs/2209.14438
Publikováno v:
Open Communications in Nonlinear Mathematical Physics, Volume 2 (December 2, 2022) ocnmp:8844
Kontsevich's graph flows are -- universally for all finite-dimensional affine Poisson manifolds -- infinitesimal symmetries of the spaces of Poisson brackets. We show that the previously known tetrahedral flow and the recently obtained pentagon-wheel
Externí odkaz:
http://arxiv.org/abs/2112.03897
Autor:
Buring, Ricardo, Kiselev, Arthemy V.
Publikováno v:
Physics of Particles and Nuclei Letters (2020) Vol.17, no.5, 707--713
The graph complex acts on the spaces of Poisson bi-vectors $P$ by infinitesimal symmetries. We prove that whenever a Poisson structure is homogeneous, i.e. $P = L_{\vec{V}}(P)$ w.r.t. the Lie derivative along some vector field $\vec{V}$, but not quad
Externí odkaz:
http://arxiv.org/abs/1912.12664
Autor:
Buring, Ricardo, Kiselev, Arthemy
Publikováno v:
Collection of works Inst. Math., Kyiv (2019) Vol.16, n.1, 22--43
The formality morphism $\boldsymbol{\mathcal{F}}=\{\mathcal{F}_n$, $n\geqslant1\}$ in Kontsevich's deformation quantization is a collection of maps from tensor powers of the differential graded Lie algebra (dgLa) of multivector fields to the dgLa of
Externí odkaz:
http://arxiv.org/abs/1907.00639
Autor:
Kiselev, Arthemy V., Buring, Ricardo
Publikováno v:
Banach Center Publications (2021) Vol. 123 "Homotopy algebras, deformation theory and quantization", 123--139
The orientation morphism $Or(\cdot)(P)\colon \gamma\mapsto\dot{P}$ associates differential-polynomial flows $\dot{P}=Q(P)$ on spaces of bi-vectors $P$ on finite-dimensional affine manifolds $N^d$ with (sums of) finite unoriented graphs $\gamma$ with
Externí odkaz:
http://arxiv.org/abs/1904.13293
Autor:
Buring, Ricardo, Kiselev, Arthemy
Publikováno v:
Journal of Physics: Conference Series (2019) Vol.1194, Paper 012017, 1-10
We recall the construction of the Kontsevich graph orientation morphism $\gamma \mapsto {\rm O\vec{r}}(\gamma)$ which maps cocycles $\gamma$ in the non-oriented graph complex to infinitesimal symmetries $\dot{\mathcal{P}} = {\rm O\vec{r}}(\gamma)(\ma
Externí odkaz:
http://arxiv.org/abs/1811.07878
Publikováno v:
Physics of Particles and Nuclei (2018) Vol. 49, No. 5, 924--928
Kontsevich designed a scheme to generate infinitesimal symmetries $\dot{\mathcal{P}} = \mathcal{Q}(\mathcal{P})$ of Poisson brackets $\mathcal{P}$ on all affine manifolds $M^r$; every such deformation is encoded by oriented graphs on $n+2$ vertices a
Externí odkaz:
http://arxiv.org/abs/1712.05259
Publikováno v:
Journal of Physics: Conf. Series 965 (2018), Paper 012010, 12 pages
Let $P$ be a Poisson structure on a finite-dimensional affine real manifold. Can $P$ be deformed in such a way that it stays Poisson? The language of Kontsevich graphs provides a universal approach -- with respect to all affine Poisson manifolds -- t
Externí odkaz:
http://arxiv.org/abs/1710.02405