Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Burfitt, Matthew"'
Autor:
Burfitt, Matthew I., Grbić, Jelena
We study the cohomology of the free loop space of $SU(n+1)/T^n$, the simplest example of a complete flag manifolds and an important homogeneous space. Through this enhanced analysis we reveal rich new combinatorial structures arising in the cohomolog
Externí odkaz:
http://arxiv.org/abs/2106.03440
Multiparameter persistence is a natural extension of the well-known persistent homology, which has attracted a lot of interest. However, there are major theoretical obstacles preventing the full development of this promising theory. In this paper we
Externí odkaz:
http://arxiv.org/abs/2008.11532
Mapper is an unsupervised machine learning algorithm generalising the notion of clustering to obtain a geometric description of a dataset. The procedure splits the data into possibly overlapping bins which are then clustered. The output of the algori
Externí odkaz:
http://arxiv.org/abs/1906.01507
Autor:
Burfitt, Matthew I., Grbić, Jelena
A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank 2 complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $Spin(4)/T^2$, $Spin(5)
Externí odkaz:
http://arxiv.org/abs/1803.03923
Autor:
Burfitt, Matthew
The free loops space $\Lambda X$ of a space $X$ has become an important object of study particularly in the case when $X$ is a manifold.The study of free loop spaces is motivated in particular by two main examples. The first is their relation to geom
Externí odkaz:
http://arxiv.org/abs/1706.10258
Autor:
BURFITT, MATTHEW1 m.burfitt@bimsa.cn, GRBIĆ, JELENA2 J.Grbic@soton.ac.uk
Publikováno v:
Homology, Homotopy & Applications. 2023, Vol. 25 Issue 2, p343-372. 30p.
Autor:
Burfitt, Matthew I., Grbi��, Jelena
A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank 2 complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $Spin(4)/T^2$, $Spin(5)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7c07f85f1de44cee7bc625525d4f0a1f
https://eprints.soton.ac.uk/472903/
https://eprints.soton.ac.uk/472903/
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Burfitt, Matthew Ingram
The free loops space ΛX of a space X has become an important object of study particularly in the case when X is a manifold. The study of free loop spaces is motivated in particular by two main examples. The first is their relation to geometrically d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::557b6fa75781c5602e018beca1fabd37
https://eprints.soton.ac.uk/415383/
https://eprints.soton.ac.uk/415383/