Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Burak Oğul"'
Publikováno v:
Communications in Advanced Mathematical Sciences, Vol 6, Iss 2, Pp 78-85 (2023)
We explore the dynamics of adhering to rational difference formula \begin{equation*} \Psi_{m+1}=\frac{\Psi_{m-3}\Psi_{m-5}}{\Psi_{m-1} \left( \pm1\pm \Psi_{m-3}\Psi_{m-5} \right) } \quad m \in \mathbb{N}_{0} \end{equation*} where the initials $\Psi_{
Externí odkaz:
https://doaj.org/article/5149c4373cb847d0872a90f4fa7768eb
Autor:
Burak Oğul, Dağistan Şimşek
Publikováno v:
Communications in Advanced Mathematical Sciences, Vol 4, Iss 1, Pp 46-54 (2021)
In this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.
Externí odkaz:
https://doaj.org/article/914f7e0f0e564c188167590a7cdfcf4d
Publikováno v:
MANAS Journal of Engineering.
We explore the dynamics of adhering to rational difference formula $$ \psi_{m+1}=\frac{\psi_{m-20}}{\pm 1 \pm \psi_{m-2}\psi_{m-5}\psi_{m-8}\psi_{m-11}\psi_{m-14}\psi_{m-17}\psi_{m-20}}, \quad m \in \mathbb{N}_{0} $$ where the initials are arbitrary
Autor:
Burak Oğul, Dagistan Simsek
Publikováno v:
Volume: 8, Issue: 2 155-163
MANAS Journal of Engineering
MANAS Journal of Engineering
In this paper, given solutions fort he following difference equation x(n+!) = x(n-14) / [1 + x(n-2) x(n-5) x(n-8) x(n-11)] where the initial conditions are positive real numbers. The initial conditions of the equation are arbitrary positive real numb
Publikováno v:
Applied Mathematics and Nonlinear Sciences. 5:275-282
In the recent years, there has been a lot of interest in studying the global behavior of, the socalled, max-type difference equations; see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The study of max type difference equ
Publikováno v:
Applied Mathematics and Nonlinear Sciences. 5:485-494
In this paper, solution of the following difference equation is examined x n + 1 = x n − 13 1 + x n − 1 x n − 3 x n − 5 x n − 7 x n − 9 x n − 11 , {x_{n + 1}} = {{{x_{n - 13}}} \over {1 + {x_{n - 1}}{x_{n - 3}}{x_{n - 5}}{x_{n - 7}}{x_{
Publikováno v:
Differential Equations and Dynamical Systems.
In this paper, we study the qualitative behavior of the rational recursive sequences $$\begin{aligned} x_{n+1}=\frac{x_{n-15}}{\pm 1\pm x_{n-3}x_{n-7}x_{n-11}x_{n-15}}, \quad n \in {\mathbb {N}}_{0} \end{aligned}$$ where the initial conditions are ar
Publikováno v:
Boletín de la Sociedad Matemática Mexicana. 27
In this paper, we study the qualitative behavior of the rational recursive sequences $$\begin{aligned} x_{n+1}=\frac{x_{n-17}}{\pm 1\pm x_{n-2}x_{n-5}x_{n-8}x_{n-11}x_{n-14}x_{n-17}}, \quad n \in \mathbb {N}_{0} \end{aligned}$$ where the initial cond
Publikováno v:
Filomat. 33:1353-1359
In this paper, solution of the following difference equation is examined xn+1=xn-17/1+xn-5?xn-11, where the initial conditions are positive reel numbers.
Publikováno v:
Boletín de la Sociedad Matemática Mexicana. 27