Zobrazeno 1 - 10
of 793
pro vyhledávání: '"Buman, Matthew P"'
Autor:
Mamun, Abdullah, Leonard, Krista S., Petrov, Megan E., Buman, Matthew P., Ghasemzadeh, Hassan
Objective: This research aims to develop a lifestyle intervention system, called MoveSense, that forecasts a patient's activity behavior to allow for early and personalized interventions in real-world clinical environments. Methods: We conducted two
Externí odkaz:
http://arxiv.org/abs/2410.09643
Autor:
Jeon, Eun Som, Choi, Hongjun, Shukla, Ankita, Wang, Yuan, Lee, Hyunglae, Buman, Matthew P., Turaga, Pavan
Publikováno v:
Engineering Applications of Artificial Intelligence, 130, 107719 (2024)
Deep learning methods have achieved a lot of success in various applications involving converting wearable sensor data to actionable health insights. A common application areas is activity recognition, where deep-learning methods still suffer from li
Externí odkaz:
http://arxiv.org/abs/2407.05315
Autor:
Hekler, Eric B, Buman, Matthew P, Grieco, Lauren, Rosenberger, Mary, Winter, Sandra J, Haskell, William, King, Abby C
Publikováno v:
JMIR mHealth and uHealth, Vol 3, Iss 2, p e36 (2015)
BackgroundThere is increasing interest in using smartphones as stand-alone physical activity monitors via their built-in accelerometers, but there is presently limited data on the validity of this approach. ObjectiveThe purpose of this work was to d
Externí odkaz:
https://doaj.org/article/a0441f33da1a403693117a737fc65323
Autor:
Jeon, Eun Som, Som, Anirudh, Shukla, Ankita, Hasanaj, Kristina, Buman, Matthew P., Turaga, Pavan
Deep neural networks are parametrized by several thousands or millions of parameters, and have shown tremendous success in many classification problems. However, the large number of parameters makes it difficult to integrate these models into edge de
Externí odkaz:
http://arxiv.org/abs/2201.00111
Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture differ
Externí odkaz:
http://arxiv.org/abs/2005.02589
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Keadle, Sarah a, Hasanaj, Kristina b, Leonard-Corzo, Krista b, Tolas, Alexander c, Crosley-Lyons, Rachel d, Pfisterer, Bjorn e, Legato, Maria a, Fernandez, Arlene b, Lowell, Emily b, Hollingshead, Kevin b, Yu, Tsung-Yen b, Phelan, Suzanne a, Phillips, Siobhan M. f, Watson, Nicole a, Hagobian, Todd a, Guastaferro, Kate g, Buman, Matthew P. b, ⁎
Publikováno v:
In Contemporary Clinical Trials January 2024 136
Topological features such as persistence diagrams and their functional approximations like persistence images (PIs) have been showing substantial promise for machine learning and computer vision applications. This is greatly attributed to the robustn
Externí odkaz:
http://arxiv.org/abs/1906.01769
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.