Zobrazeno 1 - 10
of 1 724
pro vyhledávání: '"Bukhsh A"'
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. There has been growing interest in using online Reinforcement Learning (RL) for JSSP. While online RL can quickly find acceptable solutions, especially for larger
Externí odkaz:
http://arxiv.org/abs/2409.10589
Autor:
Jimenez-Roa, Lisandro A., Simão, Thiago D., Bukhsh, Zaharah, Tinga, Tiedo, Molegraaf, Hajo, Jansen, Nils, Stoelinga, Marielle
Publikováno v:
Proceedings of the 8th European Conference of The Prognostics and Health Management Society 2024
Large-scale infrastructure systems are crucial for societal welfare, and their effective management requires strategic forecasting and intervention methods that account for various complexities. Our study addresses two challenges within the Prognosti
Externí odkaz:
http://arxiv.org/abs/2407.12894
Autor:
Smit, Igor G., Zhou, Jianan, Reijnen, Robbert, Wu, Yaoxin, Chen, Jian, Zhang, Cong, Bukhsh, Zaharah, Nuijten, Wim, Zhang, Yingqian
Job shop scheduling problems (JSSPs) represent a critical and challenging class of combinatorial optimization problems. Recent years have witnessed a rapid increase in the application of graph neural networks (GNNs) to solve JSSPs, albeit lacking a s
Externí odkaz:
http://arxiv.org/abs/2406.14096
Autor:
van Remmerden, Jesse, Kenter, Maurice, Roijers, Diederik M., Andriotis, Charalampos, Zhang, Yingqian, Bukhsh, Zaharah
In this paper, we introduce Multi-Objective Deep Centralized Multi-Agent Actor-Critic (MO- DCMAC), a multi-objective reinforcement learning (MORL) method for infrastructural maintenance optimization, an area traditionally dominated by single-objectiv
Externí odkaz:
http://arxiv.org/abs/2406.06184
Publikováno v:
Diabetes, Metabolic Syndrome and Obesity, Vol Volume 12, Pp 1323-1338 (2019)
Atif Usman,1 Mohd Makmor Bakry,2 Norlaila Mustafa,3 Inayat Ur Rehman,1,4 Allah Bukhsh,1,5 Shaun Wen Huey Lee,1 Tahir Mehmood Khan1,5,61School of Pharmacy, Monash University, Bandar Sunway, Selangor, Malaysia; 2Faculty of Pharmacy, Universiti Kebangsa
Externí odkaz:
https://doaj.org/article/164adee5646142dd8761084e13181825
Publikováno v:
Diabetes, Metabolic Syndrome and Obesity, Vol Volume 12, Pp 1409-1417 (2019)
Allah Bukhsh,1,2 Tahir Mehmood Khan,1,2 Muhammad Sarfraz Nawaz,3 Hafiz Sajjad Ahmed,4 Kok Gan Chan,5,6 Bey-Hing Goh1,2,7,81School of Pharmacy, Monash University, Bandar Sunway, Selangor, Malaysia; 2Institute of Pharmaceutical Sciences, University of
Externí odkaz:
https://doaj.org/article/2ea2f1b110204c829ff490c75265e38f
Autor:
Smit, Igor G., Bukhsh, Zaharah, Pechenizkiy, Mykola, Alogariastos, Kostas, Hendriks, Kasper, Zhang, Yingqian
In collaborative human-robot order picking systems, human pickers and Autonomous Mobile Robots (AMRs) travel independently through a warehouse and meet at pick locations where pickers load items onto the AMRs. In this paper, we consider an optimizati
Externí odkaz:
http://arxiv.org/abs/2404.08006
Publikováno v:
Patient Preference and Adherence, Vol Volume 12, Pp 2377-2385 (2018)
Allah Bukhsh,1,2 Tahir Mehmood Khan,1,2 Muhammad Sarfraz Nawaz,3 Hafiz Sajjad Ahmed,4 Kok Gan Chan,5,6 Learn-Han Lee,1,2,7–10 Bey-Hing Goh1,2,7–10 1School of Pharmacy, Monash University, Jalan Lagoon Selatan 45700, Selangor, Malaysia; 2Institute
Externí odkaz:
https://doaj.org/article/9730ec9568474394b44bb361383167bd
Publikováno v:
Patient Preference and Adherence, Vol Volume 12, Pp 2457-2474 (2018)
Allah Bukhsh,1,2 Xuan Ying Tan,1 Kok Gan Chan,3,4 Learn-Han Lee,1,2,5–8 Bey-Hing Goh,1,2,5–8 Tahir Mehmood Khan1,2 1School of Pharmacy, Monash University Malaysia, Selangor 47500, Malaysia; 2Institute of Pharmaceutical Sciences, University of Vet
Externí odkaz:
https://doaj.org/article/33f2256e3eff46e6a2708ed3d5f1be25
Within the domain of e-commerce retail, an important objective is the reduction of parcel loss during the last-mile delivery phase. The ever-increasing availability of data, including product, customer, and order information, has made it possible for
Externí odkaz:
http://arxiv.org/abs/2310.16602