Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Bujokas, Gabriel"'
Autor:
Bujokas, Gabriel, Patel, Anand
We introduce and motivate a conjecture about the existence of complete, 1-dimensional families of covers of an elliptic curve. If the conjecture holds, then it would imply a uniform lower bound of 5 for slope of the moduli space of curves. If the con
Externí odkaz:
http://arxiv.org/abs/2410.20291
Autor:
Bujokas, Gabriel, Patel, Anand
We investigate the resolution of a general branched cover $\alpha : C \to {\bf P}^1$ in its relative canonical embedding $C \subset {\bf P} E$. We conjecture that the syzygy bundles appearing in the resolution are balanced for a general cover, provid
Externí odkaz:
http://arxiv.org/abs/1504.03756
Autor:
Bujokas, Gabriel
We describe the hyperplane sections of the Severi variety of curves in $E \times \mathbb{P}^1$ in a similar fashion to Caporaso-Harris' seminal work. From this description we almost get a recursive formula for the Severi degrees (we get the terms, bu
Externí odkaz:
http://arxiv.org/abs/1409.0927
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bujokas, Gabriel, Patel, Anand
Publikováno v:
IMRN: International Mathematics Research Notices; Mar2021, Vol. 2021 Issue 6, p4564-4604, 41p
Autor:
Bujokas, Gabriel1 (AUTHOR), Patel, Anand2 (AUTHOR) anand.patel@okstate.edu
Publikováno v:
IMRN: International Mathematics Research Notices. Mar2021, Vol. 2021 Issue 6, p4564-4604. 41p.
Autor:
Tavares Bujokas, Gabriel
We describe the hyperplane sections of the Severi variety of curves in ExP1 in a similar fashion to Caporaso—Harris’ seminal work. From this description we almost get a recursive formula for the Severi degrees—we get the terms, but not the coef
Externí odkaz:
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467298