Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Bugnion, Edouard"'
Datacenter congestion management protocols must navigate the throughput-latency buffering trade-off in the presence of growing constraints due to switching hardware trends, oversubscribed topologies, and varying network configurability and features.
Externí odkaz:
http://arxiv.org/abs/2312.15403
Autor:
Ustiugov, Dmitrii, Jesalpura, Shyam, Alper, Mert Bora, Baczun, Michal, Feyzkhanov, Rustem, Bugnion, Edouard, Grot, Boris, Kogias, Marios
Serverless computing has emerged as a popular cloud deployment paradigm. In serverless, the developers implement their application as a set of chained functions that form a workflow in which functions invoke each other. The cloud providers are respon
Externí odkaz:
http://arxiv.org/abs/2309.14821
Serverless computing has seen rapid adoption due to its high scalability and flexible, pay-as-you-go billing model. In serverless, developers structure their services as a collection of functions, sporadically invoked by various events like clicks. H
Externí odkaz:
http://arxiv.org/abs/2101.09355
Autor:
Troncoso, Carmela, Payer, Mathias, Hubaux, Jean-Pierre, Salathé, Marcel, Larus, James, Bugnion, Edouard, Lueks, Wouter, Stadler, Theresa, Pyrgelis, Apostolos, Antonioli, Daniele, Barman, Ludovic, Chatel, Sylvain, Paterson, Kenneth, Čapkun, Srdjan, Basin, David, Beutel, Jan, Jackson, Dennis, Roeschlin, Marc, Leu, Patrick, Preneel, Bart, Smart, Nigel, Abidin, Aysajan, Gürses, Seda, Veale, Michael, Cremers, Cas, Backes, Michael, Tippenhauer, Nils Ole, Binns, Reuben, Cattuto, Ciro, Barrat, Alain, Fiore, Dario, Barbosa, Manuel, Oliveira, Rui, Pereira, José
This document describes and analyzes a system for secure and privacy-preserving proximity tracing at large scale. This system, referred to as DP3T, provides a technological foundation to help slow the spread of SARS-CoV-2 by simplifying and accelerat
Externí odkaz:
http://arxiv.org/abs/2005.12273
TensorFlow is a popular cloud computing framework that targets machine learning applications. It separates the specification of application logic (in a dataflow graph) from the execution of the logic. TensorFlow's native runtime executes the applicat
Externí odkaz:
http://arxiv.org/abs/1908.09291
Autor:
Ustiugov, Dmitrii, Daglis, Alexandros, Picorel, Javier, Sutherland, Mark, Bugnion, Edouard, Falsafi, Babak, Pnevmatikatos, Dionisios
With emerging storage-class memory (SCM) nearing commercialization, there is evidence that it will deliver the much-anticipated high density and access latencies within only a few factors of DRAM. Nevertheless, the latency-sensitive nature of memory-
Externí odkaz:
http://arxiv.org/abs/1801.06726
Autor:
TRONCOSO, CARMELA, BOGDANOV, DAN, BUGNION, EDOUARD, CHATEL, SYLVAIN, CREMERS, CAS, GÜRSES, SEDA, HUBAUX, JEAN-PIERRE, JACKSON, DENNIS, LARUS, JAMES R., LUEKS, WOUTER, OLIVEIRA, RUI, PAYER, MATHIAS, PRENEEL, BART, PYRGELIS, APOSTOLOS, SALATHÉ, MARCEL, STADLER, THERESA, VEALE, MICHAEL
Publikováno v:
Communications of the ACM; Sep2022, Vol. 65 Issue 9, p48-57, 10p, 2 Color Photographs
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Margaritov, A, Ustiugov, D, Bugnion, E & Grot, B 2018, Virtual Address Translation via Learned Page Table Indexes . in Proceedings of the Workshop on ML for Systems at NeurIPS co-located with the 32nd Conference on Neural Information Processing Systems (NIPS 2018) . Montréal, Canada, Workshop on ML for Systems at NeurIPS, Montreal, Canada, 8/12/18 . < http://mlforsystems.org/neurips2018/accepted_papers.html >
Address translation is an established performance bottleneck [4] in workloads operating on large datasets due to frequent TLB misses and subsequent page table walks that often require multiple memory accesses to resolve. Inspired by recent research a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3094::7d46777019ef33a56484484068cd8ff0
https://hdl.handle.net/20.500.11820/e31d3681-d9e5-4e0c-ad10-f93521315608
https://hdl.handle.net/20.500.11820/e31d3681-d9e5-4e0c-ad10-f93521315608