Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Buffière, Théophile"'
Autor:
Buffière, Théophile, Pournin, Lionel
A $3$-dimensional polytope $P$ is $k$-equiprojective when the projection of $P$ along any line that is not parallel to a facet of $P$ is a polygon with $k$ vertices. In 1968, Geoffrey Shephard asked for a description of all equiprojective polytopes.
Externí odkaz:
http://arxiv.org/abs/2307.11366
Autor:
Buffière, Théophile, Marchal, Philippe
Following Barany et al., who proved that large random lattice zonotopes converge to a deterministic shape in any dimension after rescaling, we establish a central limit theorem for finite-dimensional marginals of the boundary of the zonotope. In dime
Externí odkaz:
http://arxiv.org/abs/2303.18045
Autor:
Buffière, Théophile
We provide a sharp estimate for the asymptotic number of lattice zonotopes, inscribed in $[0,n ]^d$ when $n$ tends to infinity. Our estimate refines the logarithmic equivalent established by Barany, Bureaux, and Lund when the sum of the generators of
Externí odkaz:
http://arxiv.org/abs/2106.01005
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.