Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Bud, Andrei"'
Autor:
Bud, Andrei
We initiate the study of Prym-Brill-Noether theory for ramified double covers, extending several key results from classical Prym-Brill-Noether theory to this new framework. In particular, we improve Kanev's results on the dimension of pointed Prym-Br
Externí odkaz:
http://arxiv.org/abs/2411.00716
The even spin components of the strata of Abelian differentials are difficult to handle from a birational geometry perspective due to the fact that their spin line bundles have more sections than expected. Nevertheless, in this paper, we prove that f
Externí odkaz:
http://arxiv.org/abs/2410.18719
Autor:
Bud, Andrei
For $r\geq 3$ and $g= \frac{r(r+1)}{2}$, we study the Prym-Brill-Noether variety $V^r(C,\eta)$ associated to Prym curves $[C,\eta]$. The locus $\mathcal{R}_g^r$ in $\mathcal{R}_g$ parametrizing Prym curves $(C, \eta)$ with nonempty $V^r(C,\eta)$ is a
Externí odkaz:
http://arxiv.org/abs/2409.13034
Autor:
Bud, Andrei, Haburcak, Richard
Using limit linear series on chains of curves, we show that closures of certain Brill-Noether loci contain a product of pointed Brill-Noether loci of small codimension. As a result, we obtain new non-containments of Brill-Noether loci, in particular
Externí odkaz:
http://arxiv.org/abs/2404.15066
Autor:
Bud, Andrei
We prove that the projectivized strata of differentials are not contained in pointed Brill-Noether divisors, with only a few exceptions. For a generic element in a stratum of differentials, we show that many of the associated pointed Brill-Noether lo
Externí odkaz:
http://arxiv.org/abs/2402.11599
Autor:
Bud, Andrei
For $i\geq2$, we compute the first coefficients of the class $[\overline{D}(\mu;3)]$ in the rational Picard group of the moduli of Prym curves $\overline{\mathcal{R}}_{2i}$, where $D(\mu;3)$ is the divisor parametrizing pairs $[C,\eta]$ for which the
Externí odkaz:
http://arxiv.org/abs/2201.12009
Autor:
Bud, Andrei
For genus $g = \frac{r(r+1)}{2}+1$, we prove that via the forgetful map, the universal Prym-Brill-Noether locus $\mathcal{R}^r_g$ has a unique irreducible component dominating the moduli space $\mathcal{R}_g$ of Prym curves.
Comment: Final versi
Comment: Final versi
Externí odkaz:
http://arxiv.org/abs/2111.07644
Autor:
Bud, Andrei
For genus $g=2i\geq4$ and the length $g-1$ partition $\mu = (4,2,\ldots,2,-2,\ldots,-2)$ of 0, we compute the first coefficients of the class of $\overline{D}(\mu)$ in $\mathrm{Pic}_\mathbb{Q}(\overline{\mathcal{R}}_g)$, where $D(\mu)$ is the divisor
Externí odkaz:
http://arxiv.org/abs/2104.14947
Autor:
Bud, Andrei
We prove that the moduli space of double covers ramified at two points $\mathcal{R}_{g,2}$ is uniruled for $3\leq g\leq 6$ and of general type for $g\geq 16$. Furthermore, we consider Prym-canonical divisorial strata in the moduli space $\overline{\m
Externí odkaz:
http://arxiv.org/abs/2104.01718
Autor:
Bud, Andrei
We prove that for a generic element in a nonhyperelliptic component of an abelian stratum $\mathcal{H}_g(\mu)$ in genus $g$, the underlying curve has maximal gonality. We extend this result to the case of quadratic strata when the partition $\mu$ has
Externí odkaz:
http://arxiv.org/abs/2008.02183