Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Bucur, Alina"'
Let A and A' be abelian varieties defined over a number field k such that Hom(A,A') = 0. Under the Generalized Riemann hypothesis for motivic L-functions attached to A and A', we show that there exists a prime p of k of good reduction for A and A' at
Externí odkaz:
http://arxiv.org/abs/2310.10568
We study the asymptotic count of dihedral quartic extensions over a fixed number field with bounded norm of the relative discriminant. The main term of this count (including a summation formula for the constant) can be found in the literature (see Co
Externí odkaz:
http://arxiv.org/abs/2209.13579
We formulate a general problem: given projective schemes $\mathbb{Y}$ and $\mathbb{X}$ over a global field $K$ and a $K$-morphism $\eta$ from $\mathbb{Y}$ to $\mathbb{X}$ of finite degree, how many points in $\mathbb{X}(K)$ of height at most $B$ have
Externí odkaz:
http://arxiv.org/abs/2109.11167
From the generalized Riemann hypothesis for motivic L-functions, we derive an effective version of the Sato-Tate conjecture for an abelian variety A defined over a number field k with connected Sato-Tate group. By effective we mean that we give an up
Externí odkaz:
http://arxiv.org/abs/2002.08807
The zeta function of a curve $C$ over a finite field may be expressed in terms of the characteristic polynomial of a unitary matrix $\Theta_C$. We develop and present a new technique to compute the expected value of $\mathrm{Tr}(\Theta_C^n)$ for vari
Externí odkaz:
http://arxiv.org/abs/1610.00164
Autor:
Bucur, Alina, David, Chantal, Feigon, Brooke, Kaplan, Nathan, Lalín, Matilde, Ozman, Ekin, Wood, Melanie Matchett
We study fluctuations in the number of points of $\ell$-cyclic covers of the projective line over the finite field $\mathbb{F}_q$ when $q \equiv 1 \mod \ell$ is fixed and the genus tends to infinity. The distribution is given as a sum of $q+1$ i.i.d.
Externí odkaz:
http://arxiv.org/abs/1505.07136
We study the distribution of the traces of the Frobenius endomorphism of genus $g$ curves which are quartic non-cyclic covers of $\mathbb{P}^{1}_{\mathbb{F}_{q}}$, as the curve varies in an irreducible component of the moduli space. We show that for
Externí odkaz:
http://arxiv.org/abs/1503.03276
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We study the distribution of the number of points and of the zeroes of the zeta function in different $p$-rank strata of Artin-Schreier covers over $\F_q$ when $q$ is fixed and the genus goes to infinity. The $p$-rank strata considered include the or
Externí odkaz:
http://arxiv.org/abs/1304.7876