Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Bryan Wilie"'
Autor:
Kaustubh Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood, Abinaya Mahadiran, Simon Mille, Ashish Shrivastava, Samson Tan, null Tongshang Wu, Jascha Sohl-Dickstein, Jinho Choi, Eduard Hovy, Ondřej Dušek, Sebastian Ruder, Sajant Anand, Nagender Aneja, Rabin Banjade, Lisa Barthe, Hanna Behnke, Ian Berlot-Attwell, Connor Boyle, Caroline Brun, Marco Antonio Sobrevilla Cabezudo, Samuel Cahyawijaya, Emile Chapuis, Wanxiang Che, Mukund Choudhary, Christian Clauss, Pierre Colombo, Filip Cornell, Gautier Dagan, Mayukh Das, Tanay Dixit, Thomas Dopierre, Paul-Alexis Dray, Suchitra Dubey, Tatiana Ekeinhor, Marco Di Giovanni, Tanya Goyal, Rishabh Gupta, Louanes Hamla, Sang Han, Fabrice Harel-Canada, Antoine Honoré, Ishan Jindal, Przemysław Joniak, Denis Kleyko, Venelin Kovatchev, Kalpesh Krishna, Ashutosh Kumar, Stefan Langer, Seungjae Ryan Lee, Corey James Levinson, Hualou Liang, Kaizhao Liang, Zhexiong Liu, Andrey Lukyanenko, Vukosi Marivate, Gerard De Melo, Simon Meoni, Maxine Meyer, Afnan Mir, Nafise Sadat Moosavi, Niklas Meunnighoff, Timothy Sum Hon Mun, Kenton Murray, Marcin Namysl, Maria Obedkova, Priti Oli, Nivranshu Pasricha, Jan Pfister, Richard Plant, Vinay Prabhu, Vasile Pais, Libo Qin, Shahab Raji, Pawan Kumar Rajpoot, Vikas Raunak, Roy Rinberg, Nicholas Roberts, Juan Diego Rodriguez, Claude Roux, Vasconcellos Samus, Ananya Sai, Robin Schmidt, Thomas Scialom, Tshephisho Sefara, Saqib Shamsi, Xudong Shen, Yiwen Shi, Haoyue Shi, Anna Shvets, Nick Siegel, Damien Sileo, Jamie Simon, Chandan Singh, Roman Sitelew, Priyank Soni, Taylor Sorensen, William Soto, Aman Srivastava, Aditya Srivatsa, Tony Sun, Mukund Varma, A Tabassum, Fiona Tan, Ryan Teehan, Mo Tiwari, Marie Tolkiehn, Athena Wang, Zijian Wang, Zijie Wang, Gloria Wang, Fuxuan Wei, Bryan Wilie, Genta Indra Winata, Xinyu Wu, Witold Wydmanski, Tianbao Xie, Usama Yaseen, Michael Yee, Jing Zhang, Yue Zhang
Publikováno v:
Northern European Journal of Language Technology. 9
Data augmentation is an important method for evaluating the robustness of and enhancing the diversity of training data for natural language processing (NLP) models. In this paper, we present NL-Augmenter, a new participatory Python-based natural lang
Task-adaptive pre-training (TAPT) alleviates the lack of labelled data and provides performance lift by adapting unlabelled data to downstream task. Unfortunately, existing adaptations mainly involve deterministic rules that cannot generalize well. H
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f40ae1d8a5dedd2701251ca3e391940f
http://arxiv.org/abs/2203.16027
http://arxiv.org/abs/2203.16027
Publikováno v:
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop.
Publikováno v:
Proceeding of the Electrical Engineering Computer Science and Informatics. 5
In crowd counting task, our goals are to estimate density map and count of people from the given crowd image. From our analysis, there are two major problems that need to be solved in the crowd counting task, which are scale invariant problem and inh