Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Bruno Cafaro"'
Autor:
Marta Sanzari, Fiora Pirri, Manuel Ruiz, Fabrizio Natola, Federico Nardi, Valsamis Ntouskos, Bruno Cafaro
Publikováno v:
2015 IEEE International Conference on Computer Vision (ICCV)
Sygma
Archivio della ricerca-Università di Roma La Sapienza
ICCV
Sygma
Archivio della ricerca-Università di Roma La Sapienza
ICCV
We introduce a novel framework for modeling articulated objects based on the aspects of their components. By decomposing the object into components, we divide the problem in smaller modeling tasks. After obtaining 3D models for each component aspect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0fb8245fa29be1dd62b74968eebbb133
http://hdl.handle.net/11573/843185
http://hdl.handle.net/11573/843185
Publikováno v:
SSRR
3D Terrain understanding and structure estimation is a crucial issue for robots navigating rescue scenarios. Large scale 3D point clouds, even if crisp and yielding a detailed representation of the scene, provide no information about what is ground,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43c5c64271be911f21948fc2f8f346be
http://hdl.handle.net/11573/563940
http://hdl.handle.net/11573/563940
Autor:
Alberto De Santis, Fiora Pirri, Bruno Cafaro, Silvia Canale, Simone Sagratella, Daniela Iacoviello
Publikováno v:
Lecture Notes in Computational Vision and Biomechanics ISBN: 9789400707252
In this paper Synthetic Aperture Radar (SAR) images in X-band were analyzed in order to infer ground properties from data. The aim was to classify different zones in peri-urban forestries integrating information from different sources. In particular
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::484490c4be21e75f786e56db1efd3944
https://doi.org/10.1007/978-94-007-0726-9_15
https://doi.org/10.1007/978-94-007-0726-9_15
Publikováno v:
2012 IEEE International Conference on Imaging Systems and Techniques Proceedings.
In this paper we address the feature selection problem for X-SAR images and further the segmentation of specific chosen classes. After defining a suitable feature space for X-SAR images we select the most significant ones via a supervised machine lea
Publikováno v:
Scopus-Elsevier
GRAPP
GRAPP
In this work we consider 3D point sets, which in a typical setting represent unorganized point clouds. Segmentation of these point sets requires first to single out structural components of the unknown surface discretely approximated by the point clo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a8be704aa0888113308a548cc8c94f05
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938876744&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-84938876744&partnerID=MN8TOARS