Zobrazeno 1 - 10
of 107
pro vyhledávání: '"Bruneau, Vincent"'
Autor:
Bruneau, Vincent, Miranda, Pablo
In this article, we consider the Dirac operator with constant magnetic field in $\mathbb R^2$. Its spectrum consists of eigenvalues of infinite multiplicities, known as the Landau-Dirac levels. Under compactly supported perturbations, we study the di
Externí odkaz:
http://arxiv.org/abs/2409.08218
Publikováno v:
Analysis & PDE 17 (2024) 2923-2970
The purpose of this paper is to introduce and study Poincar\'e-Steklov (PS) operators associated to the Dirac operator $D_m$ with the so-called MIT bag boundary condition. In a domain $\Omega\subset\mathbb{R}^3$, for a complex number $z$ and for $U_z
Externí odkaz:
http://arxiv.org/abs/2206.13337
Autor:
Bruneau, Vincent, Raikov, Georgi
We consider the 3D Schr\"odinger operator $H_0$ with constant magnetic field $B$ of scalar intensity $b>0$, and its perturbations $H_+$ (resp., $H_-$) obtained by imposing Dirichlet (resp., Neumann) conditions on the boundary of the bounded domain $\
Externí odkaz:
http://arxiv.org/abs/1910.01006
We consider the Dirichlet Laplacian in a three-dimensional waveguide that is a small deformation of a periodically twisted tube. The deformation is given by a bending and an additional twisting of the tube, both parametrized by a coupling constant $\
Externí odkaz:
http://arxiv.org/abs/1903.10599
We consider the Dirichlet Laplacian in a straight three dimensional waveguide with non-rotationally invariant cross section, perturbed by a twisting of small amplitude. It is well known that such a perturbation does not create eigenvalues below the e
Externí odkaz:
http://arxiv.org/abs/1710.04976
Spectral Properties of Harmonic Toeplitz Operators and Applications to the Perturbed Krein Laplacian
Autor:
Bruneau, Vincent, Raikov, Georgi
We consider harmonic Toeplitz operators $T_V = PV:{\mathcal H}(\Omega) \to {\mathcal H}(\Omega)$ where $P: L^2(\Omega) \to {\mathcal H}(\Omega)$ is the orthogonal projection onto ${\mathcal H}(\Omega) = \left\{u \in L^2(\Omega)\,|\,\Delta u = 0 \; \m
Externí odkaz:
http://arxiv.org/abs/1609.08229
Autor:
Bruneau, Vincent, Miranda, Pablo
We consider the Schr\"odinger operator with constant magnetic field defined on the half-plane with a Dirichlet boundary condition, $H_0$, and a decaying electric perturbation $V$. We analyze the spectral density near the Landau levels, which are thre
Externí odkaz:
http://arxiv.org/abs/1609.07121
In this paper, we analyse a Vector Penalty Projection Scheme (see [1]) to treat the displacement of a moving body in incompressible viscous flows in the case where the interaction of the fluid on the body can be neglected. The presence of the obstacl
Externí odkaz:
http://arxiv.org/abs/1606.04211
Publikováno v:
J. Geom. Anal. 28 (2018) 123-151
We study the discrete spectrum of the Robin Laplacian $Q^{\Omega}_\alpha$ in $L^2(\Omega)$, \[ u\mapsto -\Delta u, \quad \dfrac{\partial u}{\partial n}=\alpha u \text{ on }\partial\Omega, \] where $\Omega\subset \mathbb{R}^{3}$ is a conical domain wi
Externí odkaz:
http://arxiv.org/abs/1602.07448
Autor:
Popoff, Nicolas, Bruneau, Vincent
Publikováno v:
Anal. PDE 9 (2016) 1259-1283
For a bounded corner domain $\Omega$, we consider the Robin Laplacian in $\Omega$ with large Robin parameter. Exploiting multiscale analysis and a recursive procedure, we have a precise description of the mechanism giving the ground state of the spec
Externí odkaz:
http://arxiv.org/abs/1511.08155