Zobrazeno 1 - 10
of 116
pro vyhledávání: '"Bruggeman, Roelof"'
For vector-valued Maass cusp forms for~$SL_2(\mathbb{Z})$ with real weight~$k\in\mathbb{R}$ and spectral parameter $s\in\mathbb{C}$, $\mathrm{Re} s\in (0,1)$, $s\not\equiv \pm k/2$ mod $1$, we propose a notion of vector-valued period functions, and w
Externí odkaz:
http://arxiv.org/abs/2408.03104
Autor:
Bruggeman, Roelof W.1 (AUTHOR), Miatello, Roberto J.2 (AUTHOR)
Publikováno v:
Representation Theory. 9/17/2024, Vol. 28, p381-433. 53p.
We define and study 'non-abelian' Poincar\'e series for the group $G=\mathrm{SU} (2,1)$, i.e. Poincar\'e series attached to a Stone-Von Neumann representation of the unipotent subgroup $N$ of $G$. Such Poincar\'e series have in general exponential gr
Externí odkaz:
http://arxiv.org/abs/2106.14200
Autor:
Bruggeman, Roelof, Verhulst, Ferdinand
One of the problems of periodic FPU-chains with alternating masses is whether significant interactions exist between the so-called (high frequency) optical and (low frequency) acoustical groups. We show that for $\alpha$-chains with $4n$ and $8n$ par
Externí odkaz:
http://arxiv.org/abs/2004.03876
Publikováno v:
Lecture Notes inMathematics 2340, 2023
We study Fourier term modules on $\mathrm{SU}(2,1)$, which are the modules arising in Fourier expansions of automorphic forms. Maximal unipotent subgroups $N$ of $\mathrm{SU}(2,1)$ are non-abelian, and we consider the ``abelian'' Fourier term modules
Externí odkaz:
http://arxiv.org/abs/1912.01334