Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Bruce W. Jordan"'
Publikováno v:
Canadian Mathematical Bulletin. 64:651-666
For an integer $n\geq 8$ divisible by $4$ , let $R_n={\mathbb Z}[\zeta _n,1/2]$ and let $\operatorname {\mathrm {U_{2}}}(R_n)$ be the group of $2\times 2$ unitary matrices with entries in $R_n$ . Set $\operatorname {\mathrm {U_2^\zeta }}(R_n)=\{\gamm
Let $E$ be an elliptic curve, with identity $O$, and let $C$ be a cyclic subgroup of odd order $N$, over an algebraically closed field $k$ with $\operatorname{char} k \nmid N$. For $P \in C$, let $s_P$ be a rational function with divisor $N \cdot P -
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a1a00a73e8ba5ea3562ba10602c4c7d3
https://www.repository.cam.ac.uk/handle/1810/325259
https://www.repository.cam.ac.uk/handle/1810/325259
Suppose $4|n$, $n\geq 8$, $F=F_n=\mathbb{Q}(\zeta_n+\bar{\zeta}_n)$, and there is one prime $\mathfrak{p}=\mathfrak{p}_n$ above $2$ in $F_n$. We study amalgam presentations for $\operatorname{PU_{2}}(\mathbb{Z}[\zeta_n, 1/2])$ and $\operatorname{PSU_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45513a1188da0cf4993ea61a4276f7e1
http://arxiv.org/abs/2001.01695
http://arxiv.org/abs/2001.01695
Publikováno v:
MIT web domain
Tunisian J. Math. 2, no. 2 (2020), 287-307
Tunisian J. Math. 2, no. 2 (2020), 287-307
For each odd prime $p$, we conjecture the distribution of the $p$-torsion subgroup of $K_{2n}(\mathcal{O}_F)$ as $F$ ranges over real quadratic fields, or over imaginary quadratic fields. We then prove that the average size of the $3$-torsion subgrou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a521a5393d4d4e1c199741683cc362f4
https://hdl.handle.net/1721.1/136644
https://hdl.handle.net/1721.1/136644
Autor:
Bruce W. Jordan, Bjorn Poonen
Publikováno v:
arXiv
We derive an analytic class number formula valid for an order in a product of $S$-integers in global fields, or equivalently for reduced finite-type affine schemes of pure dimension $1$ over $\mathbb{Z}$.
Comment: 15 pages; a second example, of
Comment: 15 pages; a second example, of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7ef843da7cb4bbce8da061e0b722cf8d
https://hdl.handle.net/1721.1/134036
https://hdl.handle.net/1721.1/134036
Autor:
Bruce W. Jordan, Yevgeny Zaytman
Publikováno v:
Proceedings of the National Academy of Sciences. 116:18880-18882
Let $K$ be a number field and ${\mathcal O}$ be the ring of $S$-integers in $K$. Morgan, Rapinchuck, and Sury have proved that if the group of units ${\mathcal O}^{\times}$ is infinite, then every matrix in ${\rm SL}_2({\mathcal O})$ is a product of
Autor:
Bruce W. Jordan, Yevgeny Zaytman
Let K be a number field and S be a finite set of valuations of K containing the archimedean valuations. Let O be the ring of S-integers. For A ∈ S L 2 ( O ) and k ≥ 1 , we define matrix-factorization varieties V k ( A ) over O which parametrize f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0eeb446d46bf52d0b607fd76b98aa54
We generalize the classical theory of periodic continued fractions (PCFs) over ${\mathbf Z}$ to rings ${\mathcal O}$ of $S$-integers in a number field. Let ${\mathcal B}=\{\beta, {\beta^*}\}$ be the multi-set of roots of a quadratic polynomial in ${\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::05dcaa2bfbf57b151ae385078f4fdfd0
Publikováno v:
arXiv
Jordan, B W, Keeton, A G, Poonen, B, Rains, E M, Shepherd-Barron, N & Tate, J T 2018, ' Abelian varieties isogenous to a power of an elliptic curve ', COMPOSITIO MATHEMATICA, vol. 154, no. 5, pp. 934-959 . https://doi.org/10.1112/S0010437X17007990
Jordan, B W, Keeton, A G, Poonen, B, Rains, E M, Shepherd-Barron, N & Tate, J T 2018, ' Abelian varieties isogenous to a power of an elliptic curve ', COMPOSITIO MATHEMATICA, vol. 154, no. 5, pp. 934-959 . https://doi.org/10.1112/S0010437X17007990
Let $E$ be an elliptic curve over a field $k$. Let $R:= \text{End}\, E$. There is a functor $\mathscr{H}\!\!\mathit{om}_R(-,E)$ from the category of finitely presented torsion-free left $R$-modules to the category of abelian varieties isogenous to a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abb7924013b953f2df6717d9362b5611
Publikováno v:
Mathematische Annalen. 327:409-428
We determine over which fields twisted Mumford quotients have rational points. Using the $p$-adic uniformization, we apply these results to Shimura curves, and show some new cases for which the jacobians are even in the sense of [PS].