Zobrazeno 1 - 10
of 140
pro vyhledávání: '"Bruce Richter"'
Publikováno v:
In Journal of Combinatorial Theory, Series B September 2018 132:80-106
Autor:
Jamie V. de Jong, R. Bruce Richter
Publikováno v:
Journal of Graph Theory.
Publikováno v:
Graphs and Combinatorics. 37:2697-2701
The number $Z(n):=\lfloor n/2\rfloor\lfloor (n-1)/2\rfloor$ is the smallest number of crossings in a simple planar drawing of $K_{2,n}$ in which both vertices on the 2-side have the same clockwise rotation. For two vertices $u,v$ on the $q$-side of a
Publikováno v:
Graphs and Combinatorics. 36:1655-1673
An injection $$f :V(T) \rightarrow \{0,\ldots ,|E(T)|\}$$ of a tree T is a graceful labelling if $$\{|f(u)-f(v)| :uv \in E(T)\}=\{1,\ldots ,|E(T)|\}$$ . Tree T is 0-rotatable if, for any $$v \in V(T)$$ , there exists a graceful labelling f of T such
Publikováno v:
Discrete Applied Mathematics. 268:137-151
A graceful labelling of a tree T is an injective function f : V ( T ) → { 0 , … , | E ( T ) | } such that { | f ( u ) − f ( v ) | : u v ∈ E ( T ) } = { 1 , … , | E ( T ) | } . An α -labelling of a tree T is a graceful labelling f with the
Motivated by the successful application of geometry to proving the Harary-Hill Conjecture for "pseudolinear" drawings of $K_n$, we introduce "pseudospherical" drawings of graphs. A spherical drawing of a graph $G$ is a drawing in the unit sphere $\ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2309f4812ddfe8900524f076e5076845
http://arxiv.org/abs/2001.06053
http://arxiv.org/abs/2001.06053
Hill's Conjecture states that the crossing number $\text{cr}(K_n)$ of the complete graph $K_n$ in the plane (equivalently, the sphere) is $\frac{1}{4}\lfloor\frac{n}{2}\rfloor\lfloor\frac{n-1}{2}\rfloor\lfloor\frac{n-2}{2}\rfloor\lfloor\frac{n-3}{2}\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a87403d18739a12335cd64c228dde03
Publikováno v:
Journal of combinatorial theory. Series B
Let Σ be a surface with boundary bd(Σ), L be a collection of k disjoint bd(Σ)-paths in Σ, and P be a non-separating bd(Σ)-path in Σ. We prove that there is a homeomorphism ϕ:Σ→Σ that fixes each point of bd(Σ) and such that ϕ(L) meets P a
Publikováno v:
Journal of Graph Theory. 87:443-459
There are three main thrusts to this article: a new proof of Levi's Enlargement Lemma for pseudoline arrangements in the real projective plane; a new characterization of pseudolinear drawings of the complete graph; and proofs that pseudolinear and co