Zobrazeno 1 - 10
of 801
pro vyhledávání: '"Bruce, Andrew A"'
Autor:
Bruce, Andrew James, Grabowski, Janusz
We introduce and examine the notion of principal $\mathbb{Z}_2^n$-bundles, i.e., principal bundles in the category of $\mathbb{Z}_2^n$-manifolds. The latter are higher graded extensions of supermanifolds in which a $\mathbb{Z}_2^n$-grading replaces $
Externí odkaz:
http://arxiv.org/abs/2412.12652
Autor:
Bruce, Andrew James
These are expanded notes for a short series of lectures, presented at the University of Luxembourg in 2017, giving an introduction to some of the ideas of supersymmetry and supergeometry. In particular, we start from some motivating facts in physics,
Externí odkaz:
http://arxiv.org/abs/2412.07799
Autor:
Bruce, Andrew James
Publikováno v:
Acta Phys. Pol. B 55, 8-A1 (2024)
We propose a very simple toy model of a $\mathbb{Z}_2^2$-supersymmetric quantum system and show, via Klein's construction, how to understand the system as being an $N=2$ supersymmetric system with an extra $\mathbb{Z}_2^2$-grading. That is, the commu
Externí odkaz:
http://arxiv.org/abs/2406.19103
Autor:
Bruce, Andrew James
Publikováno v:
Symmetry 2024, 16(6), 725
We examine the heap of linear connections on anchored vector bundles and Lie algebroids. Naturally, this covers the example of affine connections on a manifold. We present some new interpretations of classical results via this ternary structure of co
Externí odkaz:
http://arxiv.org/abs/2303.13327
Autor:
Bruce, Andrew James
Publikováno v:
Archivum Mathematicum, vol. 60 (2024), issue 2, pp. 101-124
We introduce the notion of a Lie semiheap as a smooth manifold equipped with a para-associative ternary product. For a particular class of Lie semiheaps we establish the existence of left-invariant vector fields. Furthermore, we show how such manifol
Externí odkaz:
http://arxiv.org/abs/2208.03224
Autor:
Bruce, Andrew James
Publikováno v:
International Journal of Geometric Methods in Modern Physics 2022
We examine the bundle structure of the field of nowhere vanishing null vector fields on a (time-oriented) Lorentzian manifold. Sections of what we refer to as the null tangent, are by definition nowhere vanishing null vector fields. It is shown that
Externí odkaz:
http://arxiv.org/abs/2204.11645
Autor:
Lintermans, Mark, Lutz, Maiko, Whiterod, Nick S., Gruber, Bernd, Hammer, Michael P., Kennard, Mark J., Morgan, David L., Raadik, Tarmo A., Unmack, Peter, Brooks, Steven, Ebner, Brendan C., Gilligan, Dean, Butler, Gavin L., Moore, Glenn, Brown, Culum, Freeman, Rob, Kerezsy, Adam, Bice, Chris M., Le Feuvre, Matthew C., Beatty, Stephen, Arthington, Angela H., Koehn, John, Larson, Helen K., Coleman, Rhys, Mathwin, Rupert, Pearce, Luke, Tonkin, Zeb, Bruce, Andrew, Espinoza, Tom, Kern, Pippa, Lieschke, Jason A., Martin, Keith, Sparks, John, Stoessel, Daniel J., Wedderburn, Scotte D., Allan, Hugh, Clunie, Pam, Cockayne, Bernie, Ellis, Iain, Hardie, Scott, Koster, Wayne, Moy, Karl, Roberts, David, Schmarr, David, Sharley, Joanne, Sternberg, David, Zukowski, Sylvia, Walsh, Chris, Zampatti, Brenton, Shelley, James J., Sayer, Catherine, Chapple, David G.
Publikováno v:
In Biological Conservation December 2024 300
Autor:
Bruce, Andrew Ayi-Ashong1 (AUTHOR) andrew.bruce@lshtm.ac.uk, Umesi, Ama-Onyebuchi1 (AUTHOR), Bashorun, Adedapo1 (AUTHOR), Ochoge, Magnus1 (AUTHOR), Yisa, Mohammed1 (AUTHOR), Obayemi-Ajiboye, Dolapo1 (AUTHOR), Futa, Ahmed1 (AUTHOR), Njie, Anna1 (AUTHOR), Asase, Selasi1 (AUTHOR), Jallow, Modou Bella1 (AUTHOR), Kotei, Larry1 (AUTHOR), Affleck, Lucy1 (AUTHOR), Olubiyi, Olubunmi Abiola1 (AUTHOR), Jarju, Lamin B.1 (AUTHOR), Kanyi, Madi1 (AUTHOR), Danso, Baba1 (AUTHOR), Zemsi, Armel1 (AUTHOR), Clarke, Ed1 (AUTHOR)
Publikováno v:
Trials. 9/2/2024, Vol. 25 Issue 1, p1-8. 8p.
Autor:
BRUCE, ANDREW JAMES ndrewjamesbruce@googlemail.com
Publikováno v:
Acta Physica Polonica B. 2024, Vol. 55 Issue 8, p1-11. 11p.
Autor:
Bruce, Andrew James
Publikováno v:
Universe 2022, 8(1), 56
We re-examine the appearance of semiheaps and (para-associative) ternary algebras in quantum mechanics. In particular, we review the construction of a semiheap on a Hilbert space and the set of bounded operators on a Hilbert space. The new aspect of
Externí odkaz:
http://arxiv.org/abs/2111.13369