Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Brown, Mollie S. Jagoe"'
Nambu-determinant brackets on $R^d\ni x=(x^1,...,x^d)$, $\{f,g\}_d(x)=\rho(x) \det(\partial(f,g,a_1,...,a_{d-2})/\partial(x^1,...,x^d))$, with $a_i\in C^\infty(R^d)$ and $\rho\partial_x\in\mathfrak{X}^d(R^d)$, are a class of Poisson structures with (
Externí odkaz:
http://arxiv.org/abs/2409.18875
Kontsevich constructed a map between `good' graph cocycles $\gamma$ and infinitesimal deformations of Poisson bivectors on affine manifolds, that is, Poisson cocycles in the second Lichnerowicz--Poisson cohomology. For the tetrahedral graph cocycle $
Externí odkaz:
http://arxiv.org/abs/2409.15932
Kontsevich constructed a map from suitable cocycles in the graph complex to infinitesimal deformations of Poisson bi-vector fields. Under the deformations, the bi-vector fields remain Poisson. We ask, are these deformations trivial, meaning, do they
Externí odkaz:
http://arxiv.org/abs/2409.12555