Zobrazeno 1 - 10
of 122
pro vyhledávání: '"Brouwer, Andries E."'
In this paper, we prove the existence of directed strongly regular graphs with parameters $(63,11,8,1,2)$. We construct a pair of nonisomorphic dsrg(63,11,8,1,2), where one is obtained from the other by reversing all arrows. Both directed strongly re
Externí odkaz:
http://arxiv.org/abs/2404.03100
Publikováno v:
Innov. Incidence Geom. 20 (2023) 209-221
We show that the Kneser graph of objects of a fixed type in a building of spherical type has the unique coclique extension property when the corresponding representation has minuscule weight and also when the diagram is simply laced and the represent
Externí odkaz:
http://arxiv.org/abs/2211.12663
Majorana theory is an axiomatic tool introduced by A. A. Ivanov in 2009 for studying the Monster group M and its subgroups through the 196884-dimensional Conway-Griess-Norton algebra. The group U3(5) is the socle of the centralizer in M of a subgroup
Externí odkaz:
http://arxiv.org/abs/2203.08301
We give a tight bound for the triple intersection numbers of Paley graphs. In particular, we show that any three vertices have a common neighbor in Paley graphs of order larger than 25.
Comment: 3 pages
Comment: 3 pages
Externí odkaz:
http://arxiv.org/abs/2109.03654
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We prove a conjecture by Van Dam and Sotirov on the smallest eigenvalue of (distance-$j$) Hamming graphs and a conjecture by Karloff on the smallest eigenvalue of (distance-$j$) Johnson graphs. More generally, we study the smallest eigenvalue and the
Externí odkaz:
http://arxiv.org/abs/1709.09011
Autor:
Brouwer, Andries E., Polak, Sven C.
For $n,d,w \in \mathbb{N}$, let $A(n,d,w)$ denote the maximum size of a binary code of word length $n$, minimum distance $d$ and constant weight $w$. Schrijver recently showed using semidefinite programming that $A(23,8,11)=1288$, and the second auth
Externí odkaz:
http://arxiv.org/abs/1709.02195
We develop an algorithm for efficiently computing recursively defined functions on posets. We illustrate this algorithm by disproving conjectures about the game Subset Takeaway (Chomp on a hypercube) and computing the number of linear extensions of t
Externí odkaz:
http://arxiv.org/abs/1702.03018